Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
The interface between two fluids can be made morphologically unstable, resulting in complex pattern formation frequently encountered in porous media and biological systems. Such phenomena are widespread in nature and industry, ranging from crude oil recovery, hydrology, and filtration, to the self-organisation of collective biological systems and medical applications. In most cases, these instabilities occur when a less viscous fluid displaces a more viscous one, for example water displacing syrup, either by injection or by gravity when the interface separates two fluids of different densities. Initially small disturbances to the liquid-liquid interface may result in the formation of a single finger or multiple fingers that can undergo successive tip-splitting, and may involve complex, multiple finger interactions resulting in interesting fluid-dynamical patterns. In industrial processes, it is often desirable to suppress these instabilities and to control their late-time dynamics.
The aim of the project is to investigate suppression techniques involving flow-structure interaction. The project involves mathematical modelling and numerical computation.
Informal enquiries: [Email Address Removed] / [Email Address Removed]
How to Apply:
Please refer to the following website for details on how to apply:
http://www.gla.ac.uk/research/opportunities/howtoapplyforaresearchdegree/
and select “Mathematics”
Funding Notes

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
PhD in Mathematics and Statistics - Multiscale modelling of liquid crystal-filled porous media
University of Glasgow
Deep learning for hydrodynamic modelling of wave to soft-structure interaction
The University of Manchester
4-year PhD Studentship: Mathematical modelling to provide optimal solutions to cardiovascular waiting lists.
University of Bristol