Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Project background
The quality of Remote Laser Welding (RLW) weldments is generally assessed by measuring multiple features classified as: (1) surface features (surface spatter, blowout, melt pool width, upper and bottom concavity, seam discontinuity); and, (2) sub-surface features (penetration depth, weld connection, porosity, crack). State-of-the art approaches for in-process monitoring involve the fusion of multiple sensors so multiple weld features can be detected. For example, in-process monitoring of surface features is a well-established area and comprises of CMOS/CCD camera-based or laser-based detectors – those detectors allow direct measurement of the surface features. Direct measurement of sub-surface features is yet outside the reach of current sensor technologies. Best-in-class approaches make use of indirect signals (for example, gathered via photodiodes, acoustic detectors and spectrometers), which are then correlated to the weld features via statistical and machine learning techniques. Those approaches have been proved successful only to monitor weld penetration and interface of weld connection. In-process monitoring of weld cracks, both at millimetre-scale or micron-scale levels, remains an un-solved area of investigation, and currently they are only detectable by destructive techniques or observation of cross-sections after metallographic preparation.
Project description
This case studentship is aimed to model and simulate the formation and propagation of weld cracks in Remote Laser Welding (RLW) of 6xxx high strength aluminium extrusions and to integrate those models with readily available sensors in order to enable in-process monitoring of RLW weldments. The work will support Constellium’s manufacturing concepts underpinning the development and deployment of innovative joining and assembly technologies for production of lightweight extrusion-intensive structures such as battery enclosures for electrified vehicles. A student working on this project will (1) review existing models for modelling and prediction of mechanisms of weld cracking; (2) develop novel physics-driven models for prediction of weld cracks; (3) propose strategy for integrating physics-driven simulation and sensor data streams. The modelling work will be verified and validated with relevant materials - alloys and core applications will be selected based on Constellium’s inputs.
Funding Notes

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Warwick, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
The University of Manchester
Describing, measuring and defining process capability in health modelling and simulation studies
University of Bath
Intelligent machining simulation: Process Modelling and Functional Performance Prediction of Superalloys
University of Sheffield