Coventry University Featured PhD Programmes
University of Southampton Featured PhD Programmes
University College London Featured PhD Programmes

PhD in Sustainable Process Engineering - A world without waste: process intensification for efficient low-carbon regeneration of lead-acid batteries


School of Water, Energy and Environment (SWEE)

About the Project

Do you want to make a difference and contribute towards transition to the circular economy and decarbonisation of the industrial sector? This fully funded PhD studentship in Sustainable Process Engineering (EPSRC) is an opportunity for you to develop skills in techno-economic feasibility assessment of energy systems using the state-of-the-art commercial software. You will not only develop novel concepts for clean power, heat, and hydrogen production, but also will undergo an academic mentoring and development programme that will make you a well-rounded researcher.

Lead-acid batteries are widely utilised in a variety of applications, including a high-availability source of power supply, such as hospitals. However, accumulation of the PbSO4 over the charging and discharging cycles, result in reduced capacity of the lead-acid batteries. The materials used to produce the lead-acid batteries can be regenerated from the end-of-life batteries and re-used to produce new batteries. However, the current pyrometallurgical lead recovery process, which enables recovery of lead compounds from the end-of-life batteries, is energy intensive and results in significant CO2 emissions (~550 gCO2/kgPb). Moreover, the smelting process can release metal hazardous air pollutants, composed of primarily of lead, antimony and arsenic compounds that have the health implication to the environment and population living in the vicinity of the processing factory.

Ever Resource led by Dr Athan Fox in collaboration with Prof. Vasant Kumar, who are collaborating partners to this project, has developed an innovative process for the processing of the lead paste from the end-of-life batteries that has a significantly lower environmental impact.

The main challenge associated with the innovative TLC process for lead paste regeneration is the fact that the phase of the final product depends on the temperature and conditions in the reactor (i.e. residence time). As the phase preferred by the industry is formed at a lower temperature (<260°C) and very low residence times, proper management of heat and operating conditions in the TLC calciner are challenging using the conventional equipment. In this vein, innovative reactor designs and calcination pathways need to be developed to enable the reliable control of the operating conditions and heat management in the TLC process. This will include experimental, CFD and process modelling activities.

Funding Notes

Sponsored by EPSRC through Doctoral Training Partnership Funding, this studentship will provide a bursary of £17,000 (tax free) plus full fees for three years.

Applicants should have a first or second class UK honours degree or equivalent in Chemical Engineering, Process Engineering, Energy Engineering or a related discipline.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to Cranfield University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2021
All rights reserved.