Coventry University Featured PhD Programmes
University of Liverpool Featured PhD Programmes
John Innes Centre Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Reading Featured PhD Programmes

PhD Scholarship - Ecosystem resilience to pathogens: Understanding the interplay between pathogen host shifts and coevolutionary dynamics (UQ/Exeter Joint PhD)


Project Description

Ecosystems are constantly faced with a critical environmental hazard: infectious diseases. This is because many pathogens do not only attack a single species but several species within an ecosystem. A major source of emerging infectious diseases in humans, wildlife and agriculture are host shifts, where pathogens jump between host species. To assess ecosystem resilience to the threat of invading pathogens, an in-depth understanding of the dynamics of host range evolution and its consequences is vital.

In this project, we will make important steps towards this goal by investigating the interplay between host shift dynamics and host-pathogen coevolution. Host shifts are often studied as purely ecological or epidemiological processes. Conversely, host-pathogen coevolution is typically studied within a single host species. Our proposed research will combine these two aspects into a single framework. This is important because adaptations and counter-adaptations of hosts and pathogens will be a major determinant of the likelihood of a host shift being successful.

Our project will have a theoretical and an experimental component that mutually benefit each other. In the theoretical part, to be performed at UQ under the supervision of Dr Engelstaedter, the PhD candidate will develop mathematical models of ecosystems consisting of several host and pathogen species. The models will explore how coevolution is expected to affect a pathogen’s host range, prevalence and how this feeds into the stability of the ecosystem. In the experimental part of the project, to be performed at the University of Exeter under Dr Ben Longdon’s supervision, the PhD candidate will carry out empirical work with bacteriophages (viruses) and their bacterial hosts. This system has many advantages that make high-throughput experimental evolution studies feasible, and the phages have an extremely broad host range (infecting both gram positive and negative bacteria) that make them ideally suited to study host shifts. The experiments will be the first to investigate how coevolution with their hosts will affect a pathogen’s ability to infect other hosts. The experiments will also test whether coevolution with a pathogen will affect a host’s susceptibility to new pathogens.

Our project is expected to make major contributions to our understanding of the factors underlying pathogen host shifts between species in an ecosystem. This in turn will help us understand and ultimately predict the emergence of infectious diseases.

Funding Notes

This scholarship includes a living stipend of AUD $27,596 (2019) tax free, indexed annually, tuition fees and Overseas Student Health Cover (where applicable). A travel grant of AUD $8,500 per annum, and a training grant of AUD $3,000 are also available over the program.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.