FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

PhD Studentship in Laboratory Astrochemistry

   School of Chemistry

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr E Campbell  Applications accepted all year round  Funded PhD Project (UK Students Only)

About the Project

Cosmic Chemistry in the Laboratory

This project bridges the research fields of molecular spectroscopy, nanoscience, chemical physics and astronomy. The aim is to investigate, using a unique combination of modern tools, the gas phase spectroscopic and chemical properties of carbonaceous molecules that are of central importance to astrochemistry. Motivation comes from the recent discovery of C60 in circumstellar environments and the identification of C + as the first carrier of several of the enigmatic diffuse interstellar bands (DIBs). These discoveries suggest that there must be a significant number of other fullerene analogues present in the interstellar medium and here one of the objectives is to synthesise and spectroscopically characterise them at low temperatures, enabling a direct comparison with astronomical observations. This will be achieved using an innovative combination of state-of-the-art laboratory techniques based on ion storage in a temperature variable radiofrequency trap. Ultimately, one of the aims of the project is to address the grand challenge of identifying some of the remaining DIB carrier molecules, leading to insight into their role in the transportation of organic matter from circumstellar shells to regions where star and planet formation occurs. The scientific programme is also motivated by spectroscopic investigation of complex molecular ions, with extension from the optical region to the infrared where emission features typically cited as arising due to polycyclic aromatic hydrocarbons are found. Experiments will be carried out using ion traps coupled with lasers, beams of molecules and radicals and modern methods of mass spectrometry. 

The student working on this project will gain expertise in modern methods of mass-spectrometry, cryogenic radiofrequency ion traps, high resolution molecular spectroscopy, atomic and molecular beams, pulsed and continuous-wave laser systems, computer programming and data acquisition. The student will be supported and encouraged to attend and present work related to this project at meetings at the national and international level.


Applicants should have an interest in chemical physics, gas phase molecular spectroscopy and dynamics. Applicants must be in possession of (or expecting to obtain) a first class or upper-second class degree (or equivalent) in chemistry, physics or other cognate discipline. Interested applicants should e-mail a CV to the first instance. Please include a brief description of research experience and interests and the names of two referees. The post will be filled as soon as a suitable candidate is identified.

Equality and diversity

The School of Chemistry holds a Silver Athena SWAN award in recognition of our commitment to advance gender equality in higher education. The University is a member of the Race Equality Charter and is a Stonewall Scotland Diversity Champion, actively promoting LGBT equality. The University has a range of initiatives to support a family friendly working environment. See our University Initiatives website for further information. University Initiatives website:

Related publications

Electronic absorptions of C + detected in the visible through action spectroscopy in a cryogenic trap

E.S. Reedy, J. Rademacher, R. Szabla and E. K. Campbell, Molecular Physics, e1989070, 2021

Spectroscopy of astrophysically relevant ions in traps

E. K. Campbell, Molecular Physics 118, e1797918, 2020

LV-DIB-s4PT: A new tool for astrochemistry

E. K. Campbell and P.W. Dunk, Review of Scientific Instruments, 90, 10310, 2019.

Perspective: C60+ and laboratory spectroscopy related to diffuse interstellar bands

E. K. Campbell and J. P. Maier, The Journal of Chemical Physics, 146, 160901, 2017.

Funding Notes

Applications are invited for a PhD studentship in the Ion Spectroscopy and Laboratory Astrochemistry group (View Website) at the School of Chemistry of the University of Edinburgh. This is a fully funded 4-year position including a tax-free stipend of ~£15,609 per annum, and tuition fees at the UK rate.

How good is research at University of Edinburgh in Chemistry?

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs