Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  PhD Studentship in Optimal Frictional Damping in Bladed Discs Under Rotating Conditions


   Department of Mechanical Engineering

  Dr C Schwingshackl  Applications accepted all year round  Funded PhD Project (UK Students Only)

About the Project

Applications are invited for a research studentship in the field of clean, safe and competitive future aero engine development, leading to the award of a PhD degree. The post is supported by a bursary and fees (at the UK student rate) provided by the EPSRC, with a generous bursary top-up from industrial funds. EPSRC candidates should fulfil the eligibility criteria for the award. 

The research will be conducted within the Vibration University Technology Centre (VUTC), sponsored by Rolls-Royce Plc to facilitate vibration related research. It involves the development and validation of novel nonlinear structural dynamic approaches to predict damping of aero engines components. Non-linear dampers are essential for aero-engine component safety, reliability and performance. Improved, validated non-linear contact prediction will allow the design of more robust, lighter weight components, improving Specific Fuel Consumption, Time on Wing and operational safety. As step changes in technologies and engine usage are made to meet Net Zero targets, the improved non-linear dynamic prediction capability will greatly  enhance modelling techniques de-risking technology developments.

Recent research in the VUTC has shown that the performance of frictional damping, and particularly Under Platform damping in bladed discs in aeroengines, is highly sensitive to the initial loading conditions, potentially limiting, or even negating the advantages of optimised damper designs. This research work will focus on the development of efficient techniques to improve non-linear contact modelling, to include the uncertainties into Under Platform Damper predictions, use these techniques to propose an optimised, more robust damper designs, and validate the new modelling methodology with the help of an existing rotating test bed. The work will be both numerical and experimental, and hence we are looking for a candidate with interest in both areas. The research will be conducted in close collaboration with Rolls-Royce Plc. and offers the opportunity to spend some time in the company for knowledge transfer.

You will be an enthusiastic and self-motivated person who meets the academic requirements for enrolment for the PhD degree at Imperial College London. You will have a 1st class honours degree in mechanical engineering or a related subject, and an enquiring and rigorous approach to research together with a strong intellect and disciplined work habits. An interest in numerical and experimental nonlinear dynamic techniques is essential.  Good team-working, observational and communication skills are essential.

To find out more about this research opportunity go to:

https://youtu.be/MzDXr-Q1VKw

To find out more about research at Imperial College London in this area, go to:

https://www.imperial.ac.uk/mechanical-engineering/research/

For information on how to apply, go to:

http://www.imperial.ac.uk/mechanical-engineering/study/phd/how-to-apply/

For further details of the post contact Dr C. Schwingshackl .  Interested applicants should send an up-to-date curriculum vitae to Dr Schwingshackl. Suitable candidates will be required to complete an electronic application form at Imperial College London in order for their qualifications to be addressed by College Registry.

Closing date: until post filled


Engineering (12)

Funding Notes

The post is supported by a bursary and fees (at the UK student rate) provided by the EPSRC, with a generous bursary top-up from industrial funds. EPSRC candidates should fulfil the eligibility criteria for the award.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.