University of Sheffield Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
The Chinese University of Hong Kong Featured PhD Programmes

PhD Studentship Opportunity: Cells as batteries: investigating the endogenous extracellular electric field


Faculty of Engineering and Physical Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
Prof M Hughes No more applications being accepted Funded PhD Project (European/UK Students Only)
Guildford United Kingdom Biomedical Engineering Biophysics Cell Biology

About the Project

Cells have long been characterised by their behaviour as electrical entities; muscle and nerve cells rely on ion currents to function, whilst other cells exploit slower changes in transmembrane potential to regulate cellular processes.  However, the only known extracellular electric parameter is the zeta potential - the electrokinetic potential measured about a nanometre from the cell surface, which determines whether particle solutions coagulate or remain dispersed. Since this arises from surface charge in materials science, the same is assumed for cells. Unlike inert objects, cells generate membrane potentials as well as zeta; these are considered to be entirely independent.  We have found that cells exhibit small, internally-generated electric fields, proportional to the membrane potential, which extends into the extracellular space, altering the zeta potential and potentially altering the way cells interact with other cells, ions and proteins. 

Though the presence of the electric field has been demonstrated, there are many questions to be answered about its origin and significance. This studentship will seek to address questions such as: 

What is the origin of the extracellular field?  The mechanism by which the membrane potential exerts influence outside the cell is not yet identified.  We will develop an advanced analytical model of cell behaviour comprising all of the measured electrical parameters to understand how the effect works. 

How does the effect manifest in cells in culture? We will measure the effect in tissues in culture and in tissue slices. Is the electric field amplified using cell ensembles? We will investigate using planar microelectrodes.    

Does the field play a role in cell functionality?  We will investigate whether changing the membrane potential changes how cells interact, and whether this affects cell function, by altering the extracellular concentration of ions and biomolecules at the cell’s exterior surface, or modulating molecular trafficking across the membrane. 

Supervisor: Professor Michael Hughes

This is a 3-year project starting in July 2021.

Find out more about the Centre for Biomedical Engineering.

Entry requirements

First class undergraduate degree, or Distinction at MSc. The highly interdisciplinary nature of the project means that it may be suitable for graduates in Biomedical Engineering, Biomedical Sciences, Physics, Medical Physics, Cell Biology or other related discipline. Some experience with electrophysiology would be useful, but is not a prerequisite.

English language requirements: IELTS Academic 6.5 or above (or equivalent) with 6.0 in each individual category.

How to apply

Applications should be submitted via the Biomedical Engineering PhD programme page on the "Apply" tab.

Please state clearly the studentship project at you would like to apply for.


Funding Notes

Funding covers:
• Full UK/EU tuition fee
• Stipend at £15,285 p.a. (2020/21)
• RTSG of £1,000 p.a.
• Personal Computer (provided by the department)
This studentship is funded by the University of Surrey's Doctoral College.


FindAPhD. Copyright 2005-2021
All rights reserved.