Imperial College London Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
University College London Featured PhD Programmes

PhD Studentship Opportunity in Advanced Deployable Structures for Space Flight

  • Full or part time
  • Application Deadline
    Wednesday, September 30, 2020
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

The objective of this project is to produce a lightweight, stowable memory-material for deployment in vacuum (i.e. space) to form a general “rigid” composite structure. Once a general structure has been established, the project focus of the project will be the consideration of the option to use the structure as a platform for additional technology (e.g. chemical, electrical, thermal, communication).

The area of high strain composites, especially as applied to flexible composite structures in deployable devices, has been of interest to the aerospace community over the last five years, or so. These structures are frequently used in antennas, or for deploying electronic devices. This means it is often necessary to embed conductors in them, bringing a range of manufacturing challenges. Using carbon fibres is a challenge because the fibres themselves are somewhat conductive, and can interfere with signals, although the benefits from a stiffness and dimensional stability point of view are considerable.

It is possible, in principle, to use the composite itself as the conductor, but carbon by itself is not quite good enough a conductor for most applications. One existing process for producing carbon fibre antennas makes use of fabric lightly coated in nickel in either an evaporation or sputter-coating process. However, it is also possible to increase the conductivity by lightly loading the resin with multiwall carbon nanotubes (MWCNT), which has the added advantage of potentially allowing conductive paths to be built into the composite.

Another potential application of this kind of approach is the triggering of self-deployment of the composite via resistive heating by passing a current through selectively conductive regions. The deployment could be achieved using strain energy of embedded elements within the composite and heating the surrounding matrix above its glass transition temperature or with a shape memory polymer as the composite matrix

This is a 3.5 year project, commencing in October 2020.

Entry requirements:
First Class or an Upper Second in a Physical Science degree. IELTS: 6.5 overall with 6.0 in each band.

How to apply:
Please contact the Centre Manager, Noelle Hartley (), in the first instance to lodge an expression of interest in the project. The Centre does not accept direct applications – it is important to contact the Centre Manager to discuss your interest at the earliest opportunity.

This project is part of the EPSRC CDT in MiNMaT. References are taken up at interview stage. The University reserves the right to close the advert if a suitable candidate is found.

Funding Notes

University fees will be covered for the duration of the course with a stipend of £17,000 per annum for UK/EU students.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2020
All rights reserved.