University of Birmingham Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
Brunel University London Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Leeds Featured PhD Programmes

PhD Studentship Opportunity in Modelling the Corrosion of Spent Nuclear Fuels by DFT Methods

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  • Full or part time
    Dr M Sacchi
    Prof D Read
  • Application Deadline
    No more applications being accepted
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

The PhD project, supervised primarily by MS at the Chemistry Department of the University of Surrey, will seek to investigate experimentally and computationally the corrosion mechanism, including intermediates, products and reaction rates, of spent nuclear fuel (SNF) in oxidative environments.
The objective is therefore to be able to predict quantitatively the degree of corrosion and product formation as a function of time and temperature by using a combination of experimental techniques (i.e., fluorescence, Raman, EXAFS) and computational techniques (density functional theory).
The focus will be on understanding the surface chemistry of nuclear fuel, modelling the formation and dissolution of the surface oxides exposed to wet environments. The main deliverable will be an analytical, thermodynamic and kinetic description of the corrosion mechanism of U, UO2 and UOx.

Hubbard-corrected density functional theory (DFT+U) and Dynamical mean-field theory (DMFT) will be employed to provide an accurate description of structure and electronic properties of the material surface and the reactive species, predict the geometry and energetics of the local and global minima as well as the activation energies for the reactions occurring on the surface of the materials investigated.

Experimental validation performed in the group of DR will allow us to calibrate and benchmark the theoretical results against state-of-the-art measurements at the University of Surrey and partner laboratories, including laser fluorescence and Raman spectroscopy, as well as X-ray spectroscopy at synchrotron facilities (EXAFS).

This project will also benefit from parallel experimental work at the University of Bristol (Martin, Springell and Scott groups), that will supply single-crystal thin films of U oxides with a precisely defined surface orientation.

The project will commence in October 2019 and will finish in October 2022.

Entry requirements:
UK or EU applicants who hold a First or 2:1 UK honours degree in a relevant subject area (e.g., Chemistry, Physics, Material Science) or a good master’s degree (a distinction is usually required). A passion for computational research, problem solving and collaborative experimentation is required. Experience in scientific modelling and working knowledge of a programming language (e.g., Fortran, Python, C) would be highly beneficial.

If English is not your first language, you will be required to have an IELTS Academic of 6.5 or above (or equivalent), with no sub-test score below 6.

How to apply:
Applications can be made through the Chemistry PhD programme page (https://www.surrey.ac.uk/postgraduate/chemistry-phd) at the University of Surrey. Please state the project title and supervisor clearly on all applications.

Funding Notes

The studentship will cover University fees and student stipend at normal research council (EPSRC) rates. Funding is provided for the whole duration of the PhD. This studentship forms part of TRANSCEND (Transformative Science and Engineering for Nuclear Decommissioning), which brings together a consortium of 11 universities https://www.gov.uk/government/news/collaborative-decommissioning-research-transcends-the-individual-approach



FindAPhD. Copyright 2005-2019
All rights reserved.