Imperial College London Featured PhD Programmes
The Francis Crick Institute Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Imperial College London Featured PhD Programmes
Cardiff University Featured PhD Programmes

Photoelectron Circular Dichroism as a Chiral Probe

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

This experimental project will investigate photoelectron circular dichroism (PECD) in chiral molecules (i.e. molecules exhibiting distinct forms that are non-superimposable mirror images). Chirality is hugely important in chemistry and biology, since many of the building blocks of life display this property - with one handedness always preferred. Living organisms, for example, use only left-handed amino acids and right-handed sugars, and the fundamental origin of this phenomenon remains one of the great un-answered scientific questions.

In most respects, pairs of chiral molecules show identical physical properties - except when they meet another chiral object. Interaction with circularly polarized light therefore provides a route to chiral discrimination. Conventional circular dichroism (i.e. differential absorption of left- and right-handed light) arises due to interference between optical transitions induced by electric and magnetic dipoles. The effect is therefore weak, lacking sensitivity. PECD, however, relies on photoionization and originates from scattering of the ejected electron off the chiral molecular potential. This is driven solely via electric dipole transitions and is typically orders of magnitude larger than more conventional circular dichroism.

To observe PECD, chiral molecules will be irradiated with intense, circularly polarized light from a femtosecond laser. Electrons are then ejected asymmetrically from the molecule at angles that are dependent upon its handedness. By imaging the angular distribution of the electrons, the origin of this phenomenon can be investigated in detail. A particular focus will be the systematic variation and positioning of multiple chiral centres within series of carefully chosen molecular systems. The project is well suited to those with an interest in optics, lasers and spectroscopy. Some software development for data acquisition/analysis will also be required.

Funding Notes

The annual stipend will be approx. £14,777 and full fees will be paid, for 3.5 years.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.