University of Hong Kong Featured PhD Programmes
University of Southampton Featured PhD Programmes
University of East Anglia Featured PhD Programmes

Precision Medicine DTP - Use of artificial intelligence for community-based detection of glaucoma

College of Medicine and Veterinary Medicine

About the Project

Additional supervisor: Prof Niall Strong (Glasgow Caledonian University)


Worldwide, glaucoma is the leading cause of irreversible blindness. As sight lost from glaucoma cannot be restored, early diagnosis and treatment is key but this is challenging as most people with glaucoma are not aware they are affected until substantial vision has been lost. The diagnosis of glaucoma relies on the detection of changes to the optic nerve, visible on retinal photographs; however, changes can be subtle and there is large variation in normal appearance. This leads to a large number of false positive referrals and patients with glaucoma being missed. A recent review by the UK National Screening Committee advised against population screening for glaucoma due to the inadequacy of current screening tests.1 Artificial intelligence (AI) has the potential to improve accuracy of glaucoma detection, which may make screening feasible.


The project will utilise the Scottish Clinical Optometry and Ophthalmology Network e-research (SCONe) collaboration, a research repository developed by academic partners at Glasgow Caledonian University and University of Edinburgh. In Scotland, over 1 million retinal images are captured by optometrists each year, providing a rich population-based resource for research. SCONe aims to utilise images from optometry to build a curated dataset, incorporating retinal photographs and optical coherence tomography (OCT) images linked to clinical information. This is a growing, longitudinal resource, ideal for developing AI tools to improve clinical decision making.

The main aim of this project is to use SCONe to develop AI algorithms that can be used in optometric practices to aid identification of glaucoma. The longitudinal nature of the SCONe dataset, combined with hospital and blind registration data, will also be used to address the question of whether features on retinal photographs can be used to better predict risk in glaucoma.

Glaucoma-related AI studies have already examined the ability of convolutional neural networks (CNNs) to detect glaucoma from optic disc photos.2 A major challenge has been establishing the ground truth, as the diagnosis of glaucoma is challenging. Google Health used consensus grading of images by a panel of experts to establish the diagnosis, and found an AI algorithm was better at detecting glaucoma than single glaucoma specialists.2 However, it is not clear how well this algorithm would perform in the general population, and in the real world, optic disc images are interpreted in the light of other clinical information. A better gold standard for determining glaucoma is change in optic disc appearance over time3; however, datasets with sufficient longitudinal data are rare. The longitudinal design of SCONe provides an opportunity to evaluate AI against this ground truth on a large scale in the general population, also allowing incorporation of other clinical information.

Training Outcomes

The student will receive state-of-the-art training in the core disciplines of image analysis, computational modelling, statistical methods, and data science while gaining expert knowledge in the context of ophthalmic disease. This highly interdisciplinary approach is well aligned with the “T-shaped researcher” training requirements identified as key in the DTP in Precision Medicine. The student will develop the essential soft and domain-specific skills necessary to design and implement novel quantitative and computational methods that could solve challenging problems across the entire spectrum of ophthalmology/optometry both in academic and industrial settings.

This MRC programme is joint between the Universities of Edinburgh and Glasgow. You will be registered at the host institution of the primary supervisor detailed in your project selection.

All applications should be made via the University of Edinburgh, irrespective of project location. For those applying to a University of Glasgow project, your application along with any supporting documents will be shared with University of Glasgow.

Please note, you must apply to one of the projects and you must contact the primary supervisor prior to making your application. Additional information on the application process is available from the link above.

For more information about Precision Medicine visit:

Funding Notes

Start: September 2021

Qualifications criteria: Applicants applying for an MRC DTP in Precision Medicine studentship must have obtained, or will soon obtain, a first or upper-second class UK honours degree or equivalent non-UK qualification, in an appropriate science/technology area. The MRC DTP in Precision Medicine grant provides tuition fees and stipend of at least £15,285 (UKRI rate 2020/21).

Full eligibility details are available: View Website

Enquiries regarding programme:


- Public Health England. The UK NSC recommendations on glaucoma screening in adults, December 2019. Accessed online at:
- Phene S, et al. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. Ophthalmology 2019;126(12):1627-1639.
- Medeiros FA, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005 Jun;139(6):1010-8.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Edinburgh will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2020
All rights reserved.