Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Predicting the Chemical Reactivity of Industrially Important Processes


   Department of Chemistry

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof J M Lynam  No more applications being accepted  Funded PhD Project (UK Students Only)

About the Project

Background

The prediction of the outcome of chemical reactions has long been a holy grail for synthetic chemists as it will allow the selection of the most efficient pathways to prepare high value commodity compounds. Preparing both new and known compounds in a timely and efficient manner is still a bottleneck for the chemical industry and considerable time and precious resources are routinely wasted on unsuccessful synthetic chemistry. This problem is made worse when the point of failure is close to the end of a multi-step synthetic route.

The routine prediction of chemical reaction outcomes will therefore greatly accelerate the delivery of, for example, new pharmaceuticals and agrochemicals. However, such prediction is challenging as reaction outcomes depend on the interplay between a large number of factors, from the fundamental properties of the reagents, through to the reaction conditions employed. This project is focussed on developing new methods to predict the outcome of reactions based on synthetic and mechanistic studies, closely coupled with computational chemistry.

Objectives

The principal objectives of this project are to develop a comprehensive model to predict the outcome of industrially important reactions. We wish to develop a tool that will all but guarantee the outcome of organic and inorganic reactions prior to laboratory work. The ultimate objective is to then use this insight to develop new, efficient, synthetic chemistry.

Experimental and Approach

The work will involve studying both organic and inorganic reactions through a range of different spectroscopic methods (e.g UV-vis, IR and NMR spectroscopy). Analysis of these experimental results will provide a rich dataset to build mechanistic models to understand the key factors controlling reaction outcomes. The model will then be developed by testing predicted reaction outcomes and then developed based on the accuracy of the results.

 Novelty and Training The novelty of this programme lies in the coupling of mechanistic insight (i.e. rate constants, orders of reaction, identification of key intermediates) with computational chemistry to identify the factors which control the outcome of new chemical reactions. The student undertaking this project will be trained in state-of-the-art experimental mechanistic study to gain detailed understanding of the factors controlling reaction outcomes. There will also be an opportunity to develop additional skills, such as using computational chemistry to predict reaction outcomes, based on the experimental observations.

Students with an interest in synthetic and mechanistic organic and inorganic chemistry are encouraged to apply.

All Chemistry research students have access to our innovative Doctoral Training in Chemistry (iDTC): cohort-based training to support the development of scientific, transferable and employability skills: https://www.york.ac.uk/chemistry/postgraduate/idtc/  

The Department of Chemistry holds an Athena SWAN Gold Award and is committed to supporting equality and diversity for all staff and students. The Department strives to provide a working environment which allows all staff and students to contribute fully, to flourish, and to excel: https://www.york.ac.uk/chemistry/ed/.

For more information about the project, click on the supervisor's name above to email the supervisor. For more information about the application process or funding, please click on email institution

This PhD will formally start on 1 January 2023, but in reality will be 3 January 2023.

To apply for this project, submit an online PhD in Chemistry application:

https://www.york.ac.uk/study/postgraduate/courses/apply?course=DRPCHESCHE3

You should hold or expect to achieve the equivalent of at least a UK upper second class degree in Chemistry or a related subject.  

Applications may close earlier than the stated application deadline if a suitable candidate is found.


Chemistry (6)

Funding Notes

Fully funded for 3 years by the Department of Chemistry to support Dr Lynam's Royal Society Fellowship and covers: (i) a tax-free annual stipend at the standard Research Council rate (£17,668 for 2022-23), (ii) tuition fees at the Home rate, (iii) funding for consumables.
The studentship is available to a student who is eligible to pay tuition fees at the home rate: https://www.york.ac.uk/study/postgraduate-research/fees/status/

How good is research at University of York in Chemistry?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.