A 4-year funded PhD studentship in computational biology is available to join the Marsh lab(https://www.ed.ac.uk/mrc-human-genetics-unit/research/marsh-group) at the MRC Human Genetics Unit to work on the ERC Consolidator Grant research programme PROT-STRUCT-DISEASE.
The ability to identify damaging genetic variants is central to the diagnosis, treatment and prevention of human disease. Computational variant effect predictors are widely used for prioritising likely pathogenic mutations, but their utility is limited by their accuracy. Conversely, experimental characterisation of variants is powerful but time consuming and difficult to perform on a large scale, limiting applicability in routine variant prioritisation. In this project, we will improve our ability to identify pathogenic variants through a combination of computational and experimental approaches. Fundamental to our strategy will be our consideration of alternate molecular mechanisms by which mutations can cause disease, in contrast to the current overwhelming focus on loss-of-function.
First, we will investigate the different molecular mechanisms underlying pathogenic mutations, and learn how they are related to protein structure and phenotype. Next, we will perform deep mutational scanning (DMS) on at least 10 human disease genes, enabling us to measure fitness and elucidate molecular mechanisms for all possible single amino-acid substitutions. This will facilitate the direct identification of novel pathogenic variants, and allow us to evaluate the performance existing computational phenotype predictors. Finally, we will implement our own computational variant prioritisation pipeline and meta-predictor, using our new understanding of molecular mechanisms to integrate computational phenotype and stability predictors and DMS data with structural and other protein-level features. Crucially, we will demonstrate the utility of our approach in application to sequencing data from clinical and population cohort studies. Together, the knowledge we learn, the experimental data we measure, and the tools we develop will improve our ability to identify novel pathogenic variants, and thus diagnose human genetic disorders.
Potential PhD projects are available for various aspects of this research programme, including structural bioinformatics analyses of disease mutations, investigation into how protein complex stoichiometry and assembly can influence the phenotypic effects of mutations, and analysis of deep mutational scanning and variant effect predictor datasets. Interested students are encouraged to contact Dr Joe Marsh ([Email Address Removed]) with any questions and to discuss project details.
Applicants should hold at least an upper second-class degree in a relevant subject and comply with English language requirements (https://www.ed.ac.uk/studying/postgraduate/applying/your-application/entry-requirements/english-requirements).
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Edinburgh, United Kingdom
Check out our other PhDs in Genetics
Start a new search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Investigating the molecular mechanisms and consequences of ANP aggregation for cardiovascular disease; a computational and experimental approach
University of Liverpool
Cellular protein quality control in diabetes-associated heart disease: The insight into mechanisms and therapeutic potentials
The University of Manchester
Genetic and molecular mechanisms of developmental syndromes
University of Otago