Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Quantifying failure of non-contacting gas lubricated mechanical face seals


   Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS)

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Nicola Bailey  Applications accepted all year round  Funded PhD Project (UK Students Only)

About the Project

Turbochargers are increasingly used to improve engine performance and power output, while downsizing. They will be key in helping to reduce fuel consumption and emissions through increasing engine efficiency. For next generation technology, turbocharger speeds and pressure ratios will increase, causing blow-by to increase and potentially drastic oil leakages/insufficient lubrication due to inadequate sealing. Incorporating novel sealing technology has the potential to increase turbocharger operating ranges, maximise efficiency and improve reliability. One approach is to use non-contacting mechanical face seals, which employ a very thin fluid film between a rotating face (rotor) and a stationary face (stator) to maintain a clearance. This allows operation at much smaller clearances increasing efficiency, reducing wear and having an improved dynamic response.

This project focuses on investigating the dynamics and suitability of a non-contacting mechanical face seals for operation in high performance turbocharger applications. A mathematical model will be developed for this fluid-structure-interaction problem, based on thin film flow (lubricating approximation) and a spring-mass-damper model for the faces. Key factors to incorporate include thermal effects, high speed operation and the effect of external disturbances due to components surrounding the seal interacting with it. A robust numerical technique will be formulated that is computationally efficient and produces sufficiently accurate results. A numerical study will allow safe operating conditions to be identified, and which factors play a significant role in potential destabilising behaviour. The outcomes of this work will inform designers of seals efficiency and reliability under different geometric and operating conditions.

This project is offered as part of the Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS CDT).  The Centre is inspiring and working with the next generation of leaders to pioneer and shape the transition to clean, sustainable, affordable mobility for all. 

Prospective students for this project will be applying for the CDT programme which integrates a one-year MRes with a three to four-year PhD  

AAPS is a remarkable hybrid think-and-do tank where disciplines connect and collide to explore new ways of moving people. The MRes year is conducted as an interdisciplinary cohort with a focus on systems thinking, team-working and research skills. On successful completion of the MRes, you will progress to the PhD phase where you will establish detailed knowledge in your chosen area of research alongside colleagues working across a broad spectrum of challenges facing the Industry.  

The AAPS community is both stretching and supportive, encouraging our students to explore their research in a challenging but highly collaborative way. You will be able to work with peers from a diverse background, academics with real world experience and a broad spectrum of industry partners. 

Throughout your time with AAPS you will benefit from our training activities such mentoring future cohorts and participation in centre activities such as masterclasses, research seminars, think tanks and guest lectures. 

All new students joining the CDT will be assigned student mentor and a minimum of 2 academic supervisors at the point of starting their PhD. 

Funding is available for four-years (full time equivalent) for Home students. 

See our website to apply and find more details about our unique training programme (aaps-cdt.ac.uk)  


Engineering (12) Mathematics (25)

Funding Notes

AAPS CDT studentships are available on a competition basis for UK students for up to 4 years. Funding will cover UK tuition fees as well as providing maintenance at the UKRI doctoral stipend rate (£17,668 per annum for 2022/23 rate) and a training support fee of £1,000 per annum.

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.