Centre for Genomic Regulation (CRG) Featured PhD Programmes
University of Southampton Featured PhD Programmes
University of Reading Featured PhD Programmes

Quantum spin-Hall phase in van der Waals 2D systems for future quantum computation


   London Centre for Nanotechnology

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Hidekazu Kurebayashi  No more applications being accepted  Funded PhD Project (UK Students Only)

London United Kingdom Electrical Engineering Nanotechnology Materials Science Solid State Physics Theoretical Physics

About the Project

Reduction of electronic power consumption and elimination of losses, which cause the generation of parasitic heat, are key for reducing energy demands of digital processes and can be achieved through developing advanced functional materials and novel computational methodologies. This includes paradigms beyond traditional CMOS ‘von Neumann’ computing executing Boolean logic towards quantum computing and is underpinned by new materials. Topological quantum computing has been proposed as a method for overcoming the decoherence problem that plagues conventional qubits, but hardware implementations are as of yet non-existent. Quantum spin-Hall effect (QSHE) arises from the time-reversal invariant topological nature of matter where, in the 2D limit, the helical edge modes with opposite spin polarisation propagate at the boundary of the plane, whereas its bulk transport is prohibited. One of the novel and highly promising material systems that host QSHE in the truly 2D limit is a family of van der Waals quantum materials. One of them (WTe2) demonstrates the QSHE up to 100 K, which opens up a variety of research opportunities, due to the relative easiness and control of fabrication methods. This is in stark contrast to previous 2DEG MBE-grown systems where lattice matching is deadlocked, severely restricting a wide choice of heterostructures.

NPL and UCL have been collaborating on this 2D spin system and developed strong capability in terms of sample fabrication as well as advanced device characterisation. The aims of this studentship are to explore quantum-mechanical topological nature of QSHE in 2D quantum material heterostructures, such as by interfacing with ferromagnets and superconductors. UCL (Kurebayashi's group)recently acquired a 2D material fabrication system to fabricate a variety of heterostructures from 2D magnetic/topological materials. The fabricated devices will be characterised in UCL for GHz spin excitations and in NPL (Kazakova's group) for high magnetic field quantum transport experiments. A student on this project will fabricate novel 2D heterostructures, measure their transport and magnetic properties and analyse the results with strong supports offered by both research groups. The student will travel across the world to disseminate their latest research results and to interact with scientists in the research community. The project student will be able to interact with scientists from Hitachi Cambridge Laboratory that is an industrial partner of this joint project.

We are looking for highly motivated students with suitable undergraduate/master-degree training in relevant subjects, including physics, engineering and materials science. Students who are interested in this project are encouraged to contact to Dr Cubukcu (NPL) and Dr Kurebayashi (UCL) for further details. A student on this project will join very successful CDT in the Advanced Characterisation of Materials, where a cohort of around 12 students starts on their PhDs together in the programme, taking our materials characteriation training and lectures in the first three months before starting their own research projects. Our CDT also has regular workshops where the whole cohorts get together and discuss their latest research achievements with social activities. More details are available from the link below.

Eligibility:

Eligible candidates have (or are expected to have) a master-degree (MSci, MEng, MRes etc) in physics, engineering and materials science. Due to the nature of our funding body, we primarily look for candidates from UK but there might be a chance to offer this to non-UK students as an exceptional case. Please therefore submit your application if you are interested in.

How to apply:

You should send their1. CV and 2. one-page summary of "why you are applying for this" to [Email Address Removed] by 31st Jan 2021. We will shortlist the candidates for interview in due course.

UCL Kurebayashi's group: https://www.ucl.ac.uk/spintronics/

NPL Kazakova’s group:   https://www.npl.co.uk/quantum-detection/low-loss-electronics

                                            https://www.npl.co.uk/quantum-detection/2d-materials

CDT in the Advanced Characterisation of Materials:

https://www.ucl.ac.uk/electronic-electrical-engineering/study/postgraduate-research/cdt-advanced-characterisation-materials

Dr Murat Cubukcu (NPL), [Email Address Removed], https://www.npl.co.uk/about-us/people/profiles/murat-cubukcu

Keywords: spintronics, magnetism, nanotechnology, 2D materials, van der Waals materials, GHz spin dynamics, spin waves, topological, quantum Weyl semimetals, Berry phase.


Funding Notes

This is a fully-funded four-year PhD studentship supported by UCL/Imperial Centre for Doctoral Training (CDT) in the Advanced Characterisation of Materials and National Physical Laboratory (NPL).
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs