PhD LIVE Study Fair

Oxford | Edinburgh | Sheffield

Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Imperial College London Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
Max Planck Society Featured PhD Programmes

Reconstitution of a ciliary rootlet for cryoEM structure determination.

  • Full or part time
  • Application Deadline
    Tuesday, December 03, 2019
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Cilia are found on all cells and have functions ranging from receiving signals to moving mucus out of the lungs. At their feet are basal bodies and below these are long striated filaments known as rootlets. This cytoskeletal filament is hardly mentioned in textbooks and little is known about its function and yet mutations in them cause ciliopathies (a class of genetic diseases related to loss of cilia function). In some algae the rootlets can act as mini-muscles that contract and pull the nucleus towards the base of the cilia. It is not known if any human rootlets have the same function or what the role of this contraction is.

This PhD project will involve reconstitution of rootlets from its known components. The structure of these reconstituted rootlets will be solved by cryoEM with the goal of understanding how a filament can contract with enough force to move the cell’s largest organelle. The project will provide training in biochemistry and structural biology. It will provide the opportunity to improve our understanding of one of the most enigmatic structures in the cell.

Funding Notes

Please see the LMB PhD website for further details: View Website

References

Salisbury JL, Floyd GL. (1978) Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga. Science. 202:975-7.

Chen JV, et al. (2015) Rootletin organizes the ciliary rootlet to achieve neuron sensory function in Drosophila. J Cell Biol. 211:435-53

Vlijm R, et al. (2018) STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proc Natl Acad Sci U S A. 115:E2246-E2253.

Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP. (2018) Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature. 554:202-206.

Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. (2017) Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. Cell. 169:1303-1314


Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.