Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Redefining the origin of life:(Photo)electrochemistry at subfreezing conditions

   School of Chemistry

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr P Rodriguez  No more applications being accepted  Funded PhD Project (UK Students Only)

About the Project

The origin of life remains one of the greatest and most controversial problems of science. Since 1953, when Miller and Urey performed their now-famous experiment, the scientific community has been strongly divided over whether life arose on Earth under hot-start or cold-start scenarios. While some studies support the idea of molecular evolution at high temperatures, it is now known that bio-organic molecules are highly unstable when subjected to prolonged heating or are degraded by temperatures exceeding 250°C. Recent studies, on the other hand, have suggested that the temperature on Earth, when life originated, may have been colder, and Earth, more glaciated. The ice may have retarded the breakdown of unstable bio-organic molecules, creating a beneficial environment for the formation of RNA. Therefore, it has been hypothesised that origin-of-life chemical building blocks might actually have emerged at sub-zero temperatures in water.

This project will investigate the (photo)electrochemical synthesis of basic bio-organic molecules from gas clathrates at sub-zero temperatures to provide evidence for the revolutionary hypothesis that chemical evolution occurred at sub-zero conditions.

We have recently discovered that CO2 and CH4 undergo electrochemical conversion in brines, below the freezing point of pure water. We propose that water-based gas clathrates could have acted as sub-zero-temperature nanoreactors for the (photo)electrochemical synthesis of certain origin-of-life building blocks. The project catapults (photo)electrocatalysis beyond the typical operating conditions for synthesis, through a combination of different temperatures and electrolyte compositions, enabling alternative pathways for (photo)electrocatalytic processes, impacting not only organic synthesis, but also biology.

We are looking for 2 highly motivated PhD candidates willing to work in the interception of material science, chemistry, fundamental and applied electrochemistry. Ideally, the candidate should have a 2.1 of higher degree in chemistry, or a related discipline.

Both PhD candidates will be trained in (photo)electrochemistry of carbon-based molecules and nitrogen-based molecules and in different characterization techniques. Each PhD will have the opportunity to become experts in their respective subject matter, while learning and collaborating across the project.

Biological Sciences (4) Chemistry (6)

Funding Notes

This Project is funded by the Leverhulme Trust. Leverhulme Doctoral Scholars will receive maintenance costs at Research Council rates and tuition fees at the rate for UK students. In 2021/2022 the maintenance grant for full-time students was £15,285 per annum.

Please contact [Email Address Removed] for details regarding funding and the application procedure.


1. E Sargeant, A Kolodziej, CS Le Duff, P Rodriguez. “Electrochemical conversion of CO2 and CH4 at subzero temperatures”. ACS Catalysis 10, 2020, 7464.
2. Ahn, Y.-H., et al., “Clathrate nanocage reactor for the decomposition of greenhouse gas” Chem. Eng. Journal 2019, 359, 1629.

How good is research at University of Birmingham in Chemistry?

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.