Imperial College London Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Exeter Featured PhD Programmes
Cardiff University Featured PhD Programmes

Reduced order models for battery management systems.

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Lithium-ion batteries are prevalent sources of electric energy for a variety of applications, ranging from portable electronic devices like mobile phones, tablets and laptops to Electric Vehicles and Hybrid EVs. Compared to alternative energy storage technologies, Li-ion batteries have excellent energy-to-weight ratio, no memory effect and very low self-discharge rate in idle state. These favourable properties together with the continuously decreasing production costs have established Li-ion batteries as the unique contender for automotive as well as aviation applications. In the automotive sector, the increasing demand for EVs and HEVs is pushing manufacturers to the limits of contemporary automotive battery technology. These applications form a very challenging task since operating of EVs and HEVs demands large amounts of energy and power to ensure long range and high performance, whilst the battery cells must operate safely, reliably, and durably for a time scale of the order of a decade or more.

Typically, a battery pack for an electric vehicle consists of a large number of the battery cells, physical packaging (including bus bars, casing and connectors), and Battery Management System (BMS). A BMS is composed of hardware and software controlling the charging-discharging states, guaranteeing reliable and safe operation. The BMS also handles additional operations, such as cell balancing and thermal management of the pack. The design of a sophisticated BMS is necessary to ensure long life and high performance because battery behaviour varies in time. Additionally, the BMS is crucial for safe usage because Li-ion batteries may explode or ignite if overcharged.

The goal of this project is to develop mathematical techniques manifesting themselves through efficient numerical algorithms for the PDE/variational model that are able to inform the design of appropriate reduced complexity models that can be incorporated into the software of the Li-ion cell’s BMS, allowing the adjustment of operating conditions accordingly to ensure maximal calendar battery life, bypassing premature ageing and the dangers of thermal run-away.

This project is offered within the Centre for Doctoral Training in Advanced Automotive Propulsion Systems (CDT-AAPS). The centre aims to create a diverse and stimulating environment where you can deepen your knowledge in your discipline through your PhD whilst giving breath to your skills through collaborations.

Prospective students will be applying for the integrated PhD programme run by CDT-AAPS which includes a one-year MRes (full time) followed by a PhD programme. The MRes course will be conducted as a cohort with a focus on technology, team-working and research skills. On successful completion of the MRes, you will progress to a PhD programme which can be conducted on a full-time or part-time basis.

CDT-AAPS is determined to create a welcoming and inclusive environment for all members. The whole CDT community will come together at specific events during the calendar year, most notably the induction events, workshops and guest lectures. All new students joining the CDT will be assigned both an academic personal tutor and a student mentor. Each student will be assigned a minimum of 2 academic supervisors at the point of starting their PhD.

Funding is available for four-years (full time equivalent) for Home/EU students.

See our website to apply or for more details (go.bath.ac.uk/aaps-cdt).

Funding Notes

AAPS CDT studentships are available on a competition basis for UK and EU students for up to 4 years. Funding will cover UK/EU tuition fees as well as providing maintenance at the UKRI doctoral stipend rate (£15,009 per annum for 2019/20) and a training support fee of £1,000 per annum.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.