Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Regulation of plant embryogenesis by carbohydrate availability


   School of Natural and Environmental Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr V Andriotis, Prof K Lindsey  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

This project will discover how carbohydrate availability regulates embryo development and seed viability in Arabidopsis. Seed growth depends on the interplay between developmental/genetic programs and carbohydrate supply – as sucrose – from the maternal plant. In order for seeds to develop successfully and at maturity be able to establish a new generation, plants must achieve a balance between carbohydrate availability and growth. The importance of this balance is highlighted by the acute sensitivity of reproductive growth of crops to environmental stress (e.g. sudden episodes of drought or heat stress): the large reductions in seed set, filling and viability – key determinants of seed quality and yield, and of the economic value of many crops – often are a consequence of reduced carbohydrate provision to seeds.

Despite their obvious interdependence, seed growth and primary metabolism have been studied largely in separation. This project will bridge this gap by discovering how developing Arabidopsis embryos respond when carbohydrate availability is reduced. Under our experimental conditions, carbohydrate starvation results in irreversible growth retardation in the embryo, and seed abortion. We will establish when during development carbohydrate starvation is perceived (through confocal microscopy and metabolite analysis). We will focus on the transcriptional response of developing embryos to carbohydrate starvation through global RNAseq, to discover embryo-specific changes in gene expression underpinning the growth retardation and loss of viability under carbohydrate starvation. Targets identified through this approach will be functionally characterised through reverse genetics.

The project will suit an enthusiastic and highly motivated student with a keen interest in developmental biology, plant metabolism, and gene expression analysis. The project will provide expert training in cutting-edge tissue-specific transcriptomics, in bioimaging (Confocal, Differential Interference Contrast optics, bright field and live imaging), biochemistry and biochemical genetics, molecular (DNA/RNA analysis, PCR, cloning, gene expression analysis) and synthetic (e.g. hierarchical multigene construct assembly into expression vectors) biology, computational biology (e.g. RNAseq analysis and bioinformatics). The student will fully engage also with professional development activities and training, part of the BBSRC Doctoral Training Partnership scheme. The student will benefit from expert, multidisciplinary training, essential for pursuing future career paths in academia and industry, and the wider bioeconomy. 

Informal enquiries may be made to [Email Address Removed]

HOW TO APPLY

Applications should be made by emailing [Email Address Removed] with a CV and a covering letter, including whatever additional information you feel is pertinent to your application; you may wish to indicate, for example, why you are particularly interested in the selected project/s and at the selected University. Applications not meeting these criteria will be rejected. We will also require electronic copies of your degree certificates and transcripts.

In addition to the CV and covering letter, please email a completed copy of the Application Details Form (Word document) to [Email Address Removed], noting the additional details that are required for your application which are listed in this form. A blank copy of this form can be found at: https://www.nld-dtp.org.uk/how-apply.

Biological Sciences (4)

Funding Notes

Studentships are funded by the Biotechnology and Biological Sciences Research Council (BBSRC) for 4 years. Funding will cover tuition fees at the UK rate only, a Research Training and Support Grant (RTSG) and stipend. We aim to support the most outstanding applicants from outside the UK and are able to offer a limited number of bursaries that will enable full studentships to be awarded to international applicants. These full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.