Imperial College London Featured PhD Programmes
National University of Ireland, Galway Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Southampton Featured PhD Programmes
University of Reading Featured PhD Programmes

Remaining useful life and lifetime extension of wind turbine drivetrains


About This PhD Project

Project Description

EngD in the new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures at the University of Strathclyde collaborating with Natural Power.

Developing Future Leaders in Wind and Marine Renewable Energy:

A new Centre for Doctoral Training (CDT) at the University of Strathclyde will train researchers to EngD and PhD level in wind and marine energy. Funded by the Engineering and Physical Sciences Research Council (EPSRC), a total of 70 PhD students will be recruited for four years of training and research.

In collaboration with the CDT, Natural Power are co-funding an EngD studentship. Natural Power is a leading independent renewable energy consultancy and services provider. The research student hired on the CDT/Natural Power collaborative research project will enjoy a comprehensive training programme and an accredited IET/IMechE scheme leading to CEng status.

Our CDT offers a unique programme, combining training and research that will aid graduates in transitioning into careers in the wind and marine energy sectors. Training covers all aspects of wind and marine renewable energy systems including the wider socio-economic context. As part of the CDT, the student will join a cohort of 15 students who will undertake the same training programme as well as a wider family of over 150 existing students and alumni. You will be supported by the staff and students of the CDT, as well as a dedicated academic supervision team. Parallel to the training outlined above the student will be carrying out research in the area of wind turbine drivetrain remaining useful life prediction as outlined below.

Research project overview:


In order to optimally make decisions for wind turbine maintenance, predictions on the future health states of the wind turbine drivetrain must be carried out. Prognostics is the process whereby past and present condition monitoring data of a system or component is used to project its health state into the future. The wind turbine drivetrain is a critical subassembly in terms of downtime and replacement costs, therefore, it is very important to monitor it and perform accurate prognostics. Monitoring is usually done using vibration, SCADA, and oil data. An integrated decision support system using data fusion can increase the maintenance action confidence.

Methodology:


This EngD will focus on the wind turbine drivetrain fault detection, isolation and remaining useful life estimation using advanced time-frequency methods and taking into account component dependencies. The work will involve the following steps:

1. Research of various time-frequency signal processing methods for wind turbine vibration signals, such as wavelets.
2. Extract health indicators
3. Model dependencies between components
4. Use data fusion techniques to combine various data streams
5. Develop a multi-component degradation model
6. Model lifetime extension scenarios

The work will be validated using vibration data from operating wind farms.

As a collaborative research project, the research student will work together with Natural Power and the University of Strathclyde research teams, spending time in both organisations.

The CDT values diversity and welcome applications from all sections of the community. As part of an initiative to encourage women into research, funding is available from the CDT to cover early years’ childcare in the University’s on campus nursery.

Entry Requirements


Studentships are available to UK and eligible EU citizens with (or about to obtain) a minimum of a 2.1 Masters or 1st Class Bachelor’s degree in a numerical degree such as Engineering, Physics or Maths. Experience in the following areas is beneficial but not necessary:

- Wind Energy
- Signal Processing
- Data Analytics
- Machine Learning
- Programming

Applying


To apply, please follow the application link below. The closing date for applications is 21/02/2020

APPLY NOW: https://www.findaphd.com/common/clickCount.aspx?theid=284&type=185&url=https%253a%252f%252ftinyurl.com%252fwindCDT-APPLY-NOW

For further details on our Centre, please click here: https://www.findaphd.com/common/clickCount.aspx?theid=284&type=185&url=https%253a%252f%252fwww.strath.ac.uk%252fengineering%252felectronicelectricalengineering%252fwindmarineenergysystems%252f%2b

For further enquiries related to the Centre for Doctoral Training contact: Drew Smith, CDT Administrator, Tel: 0141 548 2880, Email:

For further enquiries related to the EngD research topic contact: or

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.