Coventry University Featured PhD Programmes
Imperial College London Featured PhD Programmes
University College London Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Sheffield Featured PhD Programmes

Renewable Integration in Power Systems: Challenges in Estimation and Control

  • Full or part time
  • Application Deadline
    Friday, August 23, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

A fully-funded 3-year PhD studentship on Renewable Integration in Power Systems at the University of Southampton, a top university for Electrical Power Engineering in the UK and worldwide.
A transition from coal and gas based non-renewable generation to wind and solar based renewable generation is necessary to ensure a sustainable low-carbon future. But this transition introduces several challenges to power system operation. One of the challenges is to find the impact of stochastic and intermittent dynamics of renewable sources of energy on power grid, and how these dynamics can be better controlled to ensure global system stability. This is not a trivial problem given that the available integrated models of wind farms or solar parks do not correctly represent the dynamics of the constituent turbines or photovoltaic panels. Another challenge is a fall in system inertia for grids with large-scale integration of renewable sources, since renewable energy sources do not contribute to system inertia (which is the rotating mass in the system). A direct impact of low system inertia is to make the grids unstable as system inertia is needed to resist disturbances (such as a fault or a sudden load change) occurring in the system and to maintain the frequency of the system.
This project will find solutions to such challenges related to maintaining the stability of power grids in light of renewable integration. Towards this broad goal, the student will explore various ideas, such as developing an accurate model for a wind farm or solar park that preserves the underlying oscillatory dynamics, while reducing complexity, thereby eliminating the use of inaccurate substitute models. Such a model will then be used to design dynamic and optimal control schemes for wind farms or solar parks in order to assist in global power system stability. An idea to address the impact of renewables on system inertia is to accurately estimate the rate of change of frequency (RoCoF) in the system – as low inertia translates to high RoCoF – and use it to provide ‘synthetic inertia’ to the system using energy from high capacity storage devices or through intelligent control of wind farms and solar parks.
The project is open to customisation based on the particular interests of the student but needs to be in the broad field of stability aspects of renewable integration.
For any queries contact: Dr Abhinav Kumar Singh ()
Key facts
Entry requirements: first or upper second-class degree or equivalent in Electrical/Electronic Engineering, with knowledge of power systems. Good programming skills in MATLAB/Simulink or a similar simulation software required. Additional subject knowledge desired in control design, signal processing, dynamic modelling, and renewable energy systems.
Closing date: 23 August 2019.
Duration: three years (full-time)
Funding eligibility: full tuition fees for a UK student or an EU student who has been working or studying in the UK for at least 3 years prior to the start of their PhD, and a tax-free stipend of £14,777 per year (with annual increment of 2%). Self-funded international students are also welcome to apply.
Assessment: Nine month and 18-month reports, viva voce and thesis examination
Start date: 23 September 2019

How good is research at University of Southampton in Electrical and Electronic Engineering, Metallurgy and Materials?

FTE Category A staff submitted: 84.25

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.