Birkbeck, University of London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
The Hong Kong Polytechnic University Featured PhD Programmes

Rewind supernovae with machine learning

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr C Inserra
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Supernovae are catastrophic stellar explosions shaping the visible Universe. They play an important role in the synthesis and distribution of almost all elements and especially heavy elements such as iron, enriching the Universe since the first supernova explosion when the cosmos was metal-free. We are now in the golden era of supernova astronomy - and in general of transients – since astronomical surveys are discovering roughly 11000 transients per year. Unfortunately, the majority of them remain unrecognised, severely diminishing the scientific return. Future astronomical experiments (for example the Large Synoptic Survey Telescope - LSST) will make it more challenging boosting the number of yearly discoveries by a factor of 100, making almost impossible to recognise the different types of supernovae in the first days of their evolution, when important information about the nature of the object can be obtained.

Nevertheless, it is usually easier and possible to gather information at a later time (e.g. more than 50 days after the explosion of the star). However, we are still missing the tools to connect the early time (less than 30 days from the explosion) information of a supernova, such as luminosity evolution and electromagnetic spectra signatures, with the later ones. To connect late to early time data/observations several approaches are possible. Among them, the application of supervised and unsupervised learning algorithms to large datasets, supplied by surveys such as the Public ESO Spectroscopic Survey of Transient Objects (PESSTO) of which the supervisor is a member, provides an innovative view of the issue. This methodology will give the possibility to recognise the transient but also to retrieve the information carried by the early electromagnetic behaviour (even when not available) and shed lights on the supernova physics and its connection to the environment in which they explode.

In this project, the PhD student will gather knowledge of supernova explosions linked to the life and death of massive stars as well as programming skills in python and experience in observational astronomy, data reduction and data analysis.

Consideration is automatic upon application for admission to the Doctor of Philosophy in Physics and Astronomy with an October 2019 start date.

In the ’Research proposal and Funding’ section of your application, please specify the project title and supervisors of this project and copy the project description in the text box provided (you are able to state multiple advertised projects that you would like to be considered for)

Please select ’No, I am not self-funding my research’ when asked whether you are self-funding your research.

Please add ’STFC funded studentship’ when asked ’Please provide the name of the funding you are applying for’.

Funding Notes

Tuition fee support: Full UK/EU tuition fees
Maintenance stipend: Doctoral stipend matching UK Research Council National Minimum

You should have obtained, or be about to obtain a First or Upper Second Class UK Honours degree in Physics , or a related subject, Alternatively, applicants with equivalent qualifications gained outside the UK will also be considered. Applicants with a Lower Second Class degree will be considered if they also have a Master’s degree.
Applicants whose first language is not English are normally expected to meet the minimum University requirements (e.g. 6.5 IELTS)

Related Subjects

How good is research at Cardiff University in Physics?

FTE Category A staff submitted: 19.50

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2019
All rights reserved.