or
Looking to list your PhD opportunities? Log in here.
Wider context
Climate change caused by the release of greenhouse gases from fossil fuels and through change of land use threatens life on our planet. Drastically lowering these emissions, remains a major challenge for humanity.
One way this might be achieved is through gas fermentation, a process where bacteria grow on the carbon dioxide (CO2) and carbon monoxide (CO) contained within certain industrial waste gases and in syngas, the latter being obtained through the gasification of otherwise recalcitrant lignocellulosic and municipal waste. These gases are promising feedstocks for the microbial production of chemical commodities, fuels and bioplastics (Arenas-López et al., 2019).
CO is by far the most abundant in syngas, but due to its high toxicity it can only be utilised by a limited number of species. Previous attempts to equip the autotrophic bioplastic-producing bacterium Cuprivavidus necator with the enzymatic machinery needed to utilise CO as an additional source of carbon and energy have been met with limited success (Heinrich et al., 2017).
Aims & objectives
The overall aim of this studentship is to engineer C. necator to efficiently grow on CO-containing waste gases and convert these into desirable chemicals and biopolymers such as polyhydroxybutyrate (PHB). This will be achieved through the following objectives:
(i) Introduction of CO-utilisation gene clusters from other species
(ii) Identification of essential and so far unrecognised accessory factors encoded within these clusters and outside
(iii) Optimisation of expression of all relevant genes involved, as identified under (i) and (ii)
(iv) In vitro evolution of CO-resistant and CO-utilising strains and their genomic and physiological characterisation.
Training
This project builds on a previous study in which C. necator strains displaying considerably increased CO resistance were successfully obtained. It offers training in microbiology, continuous fermentation systems, gas/liquid chromatography, advanced microbial genetics, next generation sequencing, adaptive laboratory evolution and synthetic biology/metabolic engineering.
Research environment
You will join the BBSRC/EPSRC Synthetic Biology Research Centre Nottingham (https://sbrc-nottingham.ac.uk/ ) equipped with state of art facilities including laboratory suites dedicated to multiplexed gas fermentation, high-throughput robotics and analytics (HPLC, GC, GC-MS, LC-MS-MS). We have strong links to key groups in the Biotech sector in Europe, the US, China and India, providing ample opportunity for knowledge exchange, training and collaboration.
The university will respond to you directly. You will have a FindAPhD account to view your sent enquiries and receive email alerts with new PhD opportunities and guidance to help you choose the right programme.
Log in to save time sending your enquiry and view previously sent enquiries
The information you submit to University of Nottingham will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universitiesBased on your current searches we recommend the following search filters.
Check out our other PhDs in Nottingham, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Electrolysis of Waste Carbon Monoxide for Sustainable Fuel Production
Keele University
Negative CO2 Emissions through Combining Bio-Energy and Carbon Capture
University of Sheffield
Negative CO2 Emissions through Combining Bio-Energy and Carbon Capture
University of Sheffield