University of Edinburgh Featured PhD Programmes
University of Southampton Featured PhD Programmes
University of Exeter Featured PhD Programmes

SCENARIO: The aerodynamics of skyscrapers: tall building clusters and the urban environment

Faculty of Engineering and Physical Sciences

Guildford United Kingdom Astrophysics Civil Engineering Environmental Engineering Fluid Mechanics Mechanical Engineering Other

About the Project

By 2050 our cities will host 68% of the world’s population, compared to the current 54%, and 33% in the 1960s. This increase is often accomplished by the proliferation of tall buildings (TBs) that maximise the provision of housing and commerce using a limited street-level footprint. Tall structures affect local microclimate, pedestrian comfort and urban air quality. However, a framework that incorporates the effects of these buildings (particularly when clustered together) on wind, pollutant dispersion and temperature does not currently exist. As a result TB effects are not modelled in current weather forecast and air quality models. This is of particular concern for cities in Asia with very tall buildings and poor air quality such as Shanghai, but even in London TB clusters are more and more common. Understanding, modelling and predicting their effects are of paramount importance.

While there is growing use of air quality sensors within urban environments, the complexity of cities means that it is difficult to diagnose mass transfer processes, influences of atmospheric stability on pollutant dispersion and the location and nature of sources of pollution. Therefore, wind tunnel investigations are required to provide high quality data suitable for developing models and parameterisations. The project will be primarily experimental, using the EnFlo NERC/NCAS National Facility stratified-flow wind tunnel at the University of Surrey. Data analysis and interpretation, including the development of mathematical parametrisations, will be carried out in collaboration with the Department of Meteorology at the University of Reading.

Matteo Carpentieri talks about this project on YouTube:

Training opportunities:

The work will be highly relevant to companies, government departments and research organisations requiring knowledge and understanding of the physics of air flow and pollutant dispersal, especially in an urban context. Besides the extensive training opportunities available within the SCENARIO DTP, the students will benefit from collaboration with a large research project such as MAGIC (, in partnership with Imperial College London and the University of Cambridge. Specific training courses offered by NCAS (National Centre for Atmospheric Science) and the Von Karman Institute for Fluid Mechanics (Belgium) will also be available.

Student profile:

Applicants should hold or expect to gain a minimum of a 2:1 Bachelor Degree, Masters Degree with Merit, or equivalent in an appropriate engineering, physics, mathematics or related quantitative discipline. An enquiring mind and an enthusiasm for both laboratory and field experimental work are essential.

To apply, please follow the instructions at

Funding Notes

This project is potentially funded by the Scenario NERC Doctoral Training Partnership, subject to a competition to identify the strongest applicants.

Due to UKRI rules, the DTP can only fund a very limited number of international students. We will only consider applications from international students with an outstanding academic background placing them in the top 10% of their cohort.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Surrey will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully

Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.

FindAPhD. Copyright 2005-2021
All rights reserved.