Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

London School of Hygiene & Tropical Medicine Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Sussex Featured PhD Programmes
University of Oxford Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes

Seasonal inorganic carbon dynamics at the land-ocean interface (BAKKERDU18iNERC)

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr D Bakker
    Dr M Johnson
  • Application Deadline
    No more applications being accepted
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Rivers transport organic and inorganic carbon from land via estuaries to the oceans. Intense biological activity and mixing of freshwater and seawater lead to outgassing of carbon dioxide (CO2). Human activities may have increased this outgassing. Oceanic release of riverine carbon is a major uncertainty in the Global Carbon Budget.

This PhD research project has the objective to quantify how organic carbon degradation increases the dissolved inorganic carbon load and CO2 outgassing for UK estuaries and shelf seas. The project builds on the Land Ocean Carbon Transfer (LOCATE, programme, which aims ‘to estimate land-ocean carbon fluxes’.

You will collect carbonate chemistry samples on the R/V Cefas Endeavour, subject to a successful medical and sea survival training. You will carry out and interpret carbonate chemistry analyses on LOCATE samples from 20 UK estuaries in four seasons, as well as on year-round samples from SmartBuoys in the outer Thames and Wash estuaries and on North Sea-wide samples. You will use mixing lines of salinity versus carbonate parameters to determine carbonate chemistry transformations along the salinity gradient in UK estuaries and the North Sea. You will quantify how these processes drive estuarine and shelf sea CO2 outgassing.

This timely project of global significance includes training in seagoing research, chemical analyses and scientific data interpretation. You will collaborate with dynamic research teams at the University of East Anglia, Cefas, the National Oceanography Centre (NOC) and in LOCATE. You will be associated with the ENVEast Doctoral Training Programme. You will present your findings at (inter-)national scientific conferences, in peer-reviewed scientific publications and a PhD thesis.

We seek an enthusiastic, pro-active team player with strong scientific interests and self-motivation. You will have at least a 2.1 honours degree in physics, chemistry, mathematics, computing, or a branch of environmental science.

For more information on the primary supervisor, please go here:
Type of programme: PhD
Start date of project: October 2018
Mode of study: Full time

All secondary supervisors:

Dr Martin Johnson

Prof Richard Sanders (NOC)

Dr Naomi Greenwood (Cefas)

Dr Silke Kroeger (Cefas)

Funding Notes

This NERC Industrial Case studentship is in partnership with Cefas funded for 4 years. An annual stipend (in 2017/18 the stipend is £14,553) will be available to the successful candidate who meets the UK Research Council eligibility criteria. These requirements are detailed in the RCUK eligibility guide which can be found at . In most cases UK and EU nationals who have been ordinarily resident in the UK for 3 years prior to the start of the course are eligible for a full-award. Other EU nationals may qualify for a fees only award.


Bakker, D. C. E., Hoppema, M., Schröder, M., Geibert, W., De Baar, H. J. W. (2008) A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre. Biogeosciences 5:1373-1386. doi:10.5194/bg-5-1373-2008.

Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini, C., Boutrif, M., Zubkov, M., Marsay, C. M., Henson, S. A., Cook, K., Mayor, D. J. (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507: 480–483 doi:10.1038/nature13123.

Johnson, M. T., Greenwood, N., Sivyer, D. B., Thomson, M., Reeve, A., Weston, K., Jickells, T. D. (2013) Characterising the seasonal cycle of dissolved organic nitrogen using Cefas SmartBuoy high-resolution time-series samples from the southern North Sea. Biogeochemistry 113: 23-36. doi:10.1007/s10533-012-9737-8.

Landschützer, P., Gruber, N., Bakker, D. C. E. (2016) Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles 30: 1396-1417. doi:10.1002/2015GB005359.

Legge, O. J., Bakker, D. C. E., Meredith, M. P, Venables, H. J., Brown, P. J., Jones, E. M., Johnson, M. T. (2017) The seasonal cycle of carbonate system processes in Ryder Bay, West Antarctic Peninsula. Deep-Sea Research II 139: 167-180. doi:10.1016/j.dsr2.2016.11.006.

FindAPhD. Copyright 2005-2018
All rights reserved.