Postgrad LIVE! Study Fairs

Southampton | Bristol

University of Leeds Featured PhD Programmes
University of Glasgow Featured PhD Programmes
University of Warwick Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
University of Leeds Featured PhD Programmes

Seeing sodium ions in membrane transporters


Project Description

Transport of molecules across membranes is an essential mechanism for cell growth and survival, or to detoxify them from toxic compounds. Primary active transporters harness the energy from ATP hydrolysis to transport molecules against a concentration gradient, while secondary active transporters use the energy stored in concentration gradients of protons or ions. Some secondary transporters utilise the Na+ gradient across membranes, created by other transporters that actively pump Na+ out of the cell, to drive the uptake of solutes into the cell. Sodium-dependent transporters can be found across all kingdoms of life. The structures of several sodium-dependent transporters have been determined but due to its small size it is difficult to directly distinguish a sodium cation from a water molecule. Therefore, indirect methods are utilised, identifying these sites by structural considerations, like geometry and coordination, further validated by mutagenesis. Alternatively, sodium sites can be ‘determined’ by substitution of sodium with heavier mono-valent cations such as rubidium or thallium and analysis of either isomorphous or anomalous electron density difference maps. To-date, there is no report of directly observing a sodium cation bound to a protein.

During this work, we want to develop novel methods to ‘visualise’ the bound sodium on membrane proteins (also applicable to soluble proteins) based on long-wavelength X-ray crystallography in a wavelength range of around 5 Å which will allow a direct, unambiguous determination of sodium sites directly from the anomalous signal from sodium present at such long wavelengths. We will also perform biochemical assays to further characterise these sites and their role in the function of the transporters. The work will refine our understanding on how these transporters operate since many of them are involved in diseases.

This project is fully funded for 3 years (3-year PhD), and will be based at the Imperial College London outstation at the Research Complex at Harwell, Oxfordshire and Diamond Light Source, Oxfordshire, jointly between the labs of Dr Konstantinos Beis and Dr Armin Wagner. The candidate must hold a BSc at 2:1 or better and MUST hold or expect a Masters degree at Merit level or better. The candidate must meet the Research Council residency criteria. It would ideally suit an outstanding biochemistry graduate with a strong interest in structural biology. The candidate must have molecular biology, protein production and purification experience. Experience with membrane proteins will be of an advantage. Full training will be provided in all necessary areas of protein biochemistry and structural work.

To be considered for this PhD, please send a motivation letter, CV and names of two referees to Dr Armin Wagner () and Dr Konstantinos Beis ()

Closing date for applications is 1st March. Interviews will be scheduled soon after.

Funding Notes

The studentship is fully-funded which includes a bursary (minimum £16,777 tax free) and fees (for UK/EU candidates only). Candidates must meet UKRI residency Criteria as outlined in Annex 1: View Website

Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.