Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Simulation-led investigation of the structure-property relationships of conjugated polymers


   Department of Physics

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Chris Lorenz  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

Conjugated polymers are used in a range of applications including bioimaging/sensing [1,2]. Conjugated polymer nanoparticles (CPNs) are formed using capping agents to provide stable and soluble conjugated polymer formulations [3]. Then functional groups can be used to further tune the properties of CPNs for a particular application [4,5]. While there has been a significant amount of research done investigating properties of thin films of conjugated polymers and of crystalline phases of conjugated polymers, there has been very little work has been done investigating the structural properties of the polymers within CPNs. Therefore, there is a lot of scope for investigating how the structure of the molecules within the CPNs affect their functional properties. 

One approach that has been useful in investigating structure-function relationships of a range of types of materials are molecular simulation techniques. In this project we aim to combine quantum chemistry and classical simulation techniques to investigate the structural properties of polymers used within these CPNs. Our lab has recently demonstrated the power of the combination of these methods for understanding the molecular structure found within an amorphous slab of F8BT, which is a typical conjugated polymer [6]. In this project, I would like to build upon this recent success. In doing so we would follow a similar simulation approach and investigate other conjugated polymers that are relevant for various applications including bioimaging and theranostics. We would also investigate the effect of different capping agents on the interfacial properties of the conjugated polymer nanoparticles. Additionally I would like the student to use machine learning approaches in combination with the existing databases (both in-house and external) of conjugated monomer properties to search the chemical space and identify potentially novel chemistries that might be attractive alternatives for these applications. Finally the student would build upon the existing tools which we have developed in the group to establish a high-throughput simulation protocol to assess the suitability of the identified polymer candidate molecules. The combination of these various aspects of the project will lead to us being able to better understand the structure property relationships of conjugated polymers in nanoparticles.

To be considered for the position candidates must apply via King’s Apply online application system. Details are available at:

https://www.kcl.ac.uk/physics/postgraduate/research-degrees

Please indicate your desired supervisor and quote research group [Lorenz Lab] in your application and all correspondence.

The selection process will involve a pre-selection on documents, if selected this will be followed by an invitation to an interview. If successful at the interview, an offer will be provided in due time.

https://www.kcl.ac.uk/study/postgraduate-research/how-to-apply

Biological Sciences (4) Physics (29)

Funding Notes

Funding is available for 3.5 years and covers tuition fees at the level set for UK students, c. £6,120 p.a. and a tax-free stipend of approximately £19,000 p.a. with possible inflationary increases after the first year.

References

[1] D. Gao et al. ACS Appl. Polym. Mater. 2020, 2, 4241-4257.
[2] B. Bao et al. Adv. Sci. 2015, 2, 1400009.
[3] L. R. MacFarlane et al. Nat. Rev. Mater. 2021, 6, 7-26.
[4] A. Creamer et al. Nat. Commun. 2018, 9, 3237.
[5] Y. Yang et al. Adv. Mater. 2013, 25, 2624-2628.
[6] R. M. Ziolek et al., 2022, ACS Nano 16, 14432-14442.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.