Coventry University Featured PhD Programmes
University of Southampton Featured PhD Programmes
University College London Featured PhD Programmes

Single Cell Biology of Hematopoietic Stem- and Progenitor Cells in Blood Cancer and Ageing


Weatherall Institute of Molecular Medicine

About the Project

The focus of the Nerlov laboratory is combining single cell biology (single cell RNAseq, ATACseq and functional analysis) with advanced mouse genetics to study hematopoietic stem– and progenitor cells in normal development and during ageing. We use the knowledge generated to unravel the cellular and molecular mechanisms through which hematopoietic stem- and progenitor cells are specified, and to identify the cells and molecular mechanisms involved in the aetiology of acute myeloid leukaemia (AML) and myeloproliferative disorders (MPD). We combine studies of genetically modified mice (fluorescent reporters, disease models) with molecular and functional analysis of human haematopoiesis, including samples from patients with blood cancer, with the aim of developing pharmacological strategies to treat disease and counteract the adverse effects of ageing on the hematopoietic system and overall human physiology.

Single cell biology of normal hematopoietic stem and progenitor cells:
Hematopoietic stem cells sustain life-long production of lymphocytes, granulocytes, monocytes, erythrocytes and platelets. This occurs through a complex series of progenitor cells that become increasingly lineage-restricted as their differentiation progresses. By combining single cell RNAseq with fluorescent reporter mice and functional single cell assays (HSC transplantation, progenitor differentiation assays) we have identified 5 distinct HSC subtypes (Sanjuan-Pla, Nature 2013; Carrelha, Nature 2018), and novel myelo-erythroid progenitor populations, generating a revised hierarchical model of hematopoiesis (Drissen, Nat. Immunol. 2016; Drissen, Sci. Immunol. 2019).

We will now use advanced genetics (HSC subtype-specific reporters, intersectional lineage tracing) to determine the physiological importance of HSC subtypes and progenitor subsets during steady state, stress hematopoiesis, and leukemogenesis. Parallel studies on human HSCs (collaboration with Vyas laboratory) use barcoding, HSC xenografting and single cell HSC profiling to identify human HSC subtypes and their associated transcriptional programs. We will perform integrated single cell RNAseq and ATACseq analysis, combined with CRISPR-based library screens, to determine how transcriptional and epigenetic regulators interact to generate HSC and progenitor fate restriction. In addition, we will investigate how leukemogeneic mutations collaborate through their effects on gene expression and chromatin accessibility (di Genua, Cancer Cell 2020) to determine the leukaemia phenotype using genetic modelling and single cell molecular profiling of human patient samples from myeloid malignancies, including acute erythroid leukaemia and systemic mastocytosis.

The role of ageing in leukaemia development and immune decline:
We previously showed that ageing leads to hematopoietic platelet-lineage bias due to expansion of platelet-biased HSCs (Grover, Nat. Comms. 2016), a process that contributes to immune-senescence. Through comprehensive molecular profiling of both hematopoietic and stromal cell types at different from young and aged mice we have shown that increased TGF1 and IL-6 signalling regulates this process (Valletta et al., Nat Comms. 2020).

We are now investigating how interfering with these signals can counteract ageing of HSCs and associated alterations in the production of blood cells, as well as decrease susceptibility to myeloid malignancies.

Bi-directional c-Kit–mKitL signalling in hematopoiesis and breast cancer:
We previously identified bi-directional signalling by c-Kit and membrane-associated KitL (mKitL) as a novel signalling system that is critical for the post-natal expansion of the thymus (Buono et al., Nat. Cell Biol. 2016) and showed that it works by activating the AKT/mTOR pathway downstream of mKitL (Buono et al., Nat. Comms. 2018). Subsequently, we have shown that mKitL is expressed in a range of human cancers, and that signalling through mKitL is critical for triple-negative breast cancer progression.

Our next aim is to develop mKitL as a therapeutic target across multiple cancers, using genetic targeting in xenograft models of human cancer, and the development of first-in-class small-molecule mKitL inhibitors.

Projects are available in all these areas, including single cell analysis of human myeloid malignancies; the development of pharmacological strategies to counteract hematopoietic ageing; the identification of transcriptional and epigenetic mechanisms that specify normal and malignant HSC and progenitor cell populations; the role of ageing in development of myeloid malignancies; and the study of mKitL in human cancer models and development of mKitL small molecule inhibitors.

Training is available in the areas of HSC and progenitor biology, biology of ageing, transcription factor biology, cytokine biology, single cell analysis of HSC/progenitor function, single cell functional genomics (RNAseq, ATACseq), advanced flow cytometry, advanced mouse genetics, CRISPR/Cas9-based genome editing and library screening technologies and advanced bioinformatics.

More information about training opportunities can be found on our website.

Funding Notes

Funding for this project is available to scientists through the WIMM Prize Studentship and the RDM Scholars Programme, which offers funding to outstanding candidates from any country. Successful candidates will have all tuition and college fees paid and will receive a stipend of £18,000 per annum.

For October 2021 entry, the application deadline is 8th January 2021 at 12 noon midday, UK time.

Please visit our website for more information on how to apply.



References

Valletta, S., A. Thomas, Y. Meng, X. Ren, R. Drissen, H. Sengül, C. Di Genua and C. Nerlov. 2020. Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat. Comms. 11: 4075

Di Genua, C., S. Valletta, M. Buono, B. Stoilova, C. Sweeney, A. Rodriguez-Meira, A. Grover, R. Drissen, Y. Meng, R. Beveridge, Z. Aboukhalil, D. Karamitros, M.E. Belderbos, L. Bystrykh, S. Thongjuea, P. Vyas, and C. Nerlov. 2020. C/EBP and GATA-2 mutations induce bi-lineage acute erythroid leukaemia through transformation of a neomorphic neutrophil-erythroid progenitor. Cancer Cell 37: 690-704

Drissen, R., S. Thongjuea, K. Theilgaard-Mönch and C. Nerlov. 2019. Identification of two distinct pathways of human myelopoiesis. Sci. Immunol. 4: eaau7148.

Buono, M., M.-L. Thézénas, A. Ceroni, R. Fischer and C. Nerlov. 2018. ¬¬Bi-directional signaling by membrane-bound KitL induces proliferation and co-ordinates thymic endothelial cell and thymocyte expansion. Nat. Comms. 9: 4685.

Carrelha, J., Y. Meng, L. Kettyle, T.C. Luis, R. Norfo, V. Alcolea Devesa, F. Grasso, A. Gambardella, A. Grover, K. Högstrand, A. Matheson Lord, A. Sanjuan-Pla, P. Woll, C. Nerlov*, S.E.W. Jacobsen*. 2018. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554: 106-110. *Equal contribution.

Drissen, R., N. Buza-Vidas, P. Woll, S. Thongjuea, A. Gambardella, A. Giustacchini, E. Mancini, A. Zriwil, M. Lutteropp, A. Grover, A. Mead, E. Sitnicka, S.E.W. Jacobsen and C. Nerlov. 2016. Distinct myeloid progenitor differentiation pathways identified through single cell RNA sequencing. Nat. Immunol. 17: 666–676.

Grover A., A. Sanjuan-Pla, S. Thongjuea, J. Carrelha, A. Giustacchini, A. Gambardella, I. Macaulay, E. Mancini, T.C. Luis, A. Mead, S.E.W. Jacobsen and C. Nerlov. 2016. Single cell global gene profiling reveals molecular and functional platelet bias of aged hematopoietic stem cells. Nat. Comms. 7: 11075.

Buono, M., R. Facchini, S. Matsuoka, S. Thongjuea, D. Waithe, T. C. Luis, A. Giustacchini, P. Besmer, A. J. Mead, S.E.W. Jacobsen and C. Nerlov. 2016. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nat. Cell. Biol. 18: 157-167.

Sanjuan-Pla A., I. Macaulay, C.T. Jensen, P.S. Woll, T.C. Luis, A. Mead, S. Moore, C. Carella, T. Bouriez-Jones, O. Chowdhury, L. Stenson, M. Lutteropp, J.A.C. Green, R. Facchini, H. Boukarabila, A. Grover, A. Gambardella, J. Carrelha, P. Tarrant, D. Atkinson, S.-A. Clark, C. Nerlov* and S.E.W. Jacobsen*. 2013. Platelet-biased stem cells reside at the apex of the hematopoietic stem cell hierarchy. Nature, 502: 232-236. *Equal contribution.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Oxford will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2020
All rights reserved.