European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
King’s College London Featured PhD Programmes

Smaller, Lighter, More Energy Efficient – using metamaterials and 3D printing to push antennas to the limits: Design and Manufacture of Broadband 3D Multilayer Metamaterials for Microwave and mm-wave Application

Project Description

Joint supervisors: Prof Alastair P Hibbins, Prof J Roy Sambles
External partner: John Davies (Thales)


Project objective: To develop broadband metamaterial designs for antenna and radome applications using additive manufacturing techniques.


The use of additive manufacturing techniques to create novel broadband metamaterial designs is of great interest for various applications in the microwave, millimetre wave range and beyond. Metamaterials typically suffer from narrow bandwidths, are inhomogeneous and have incident angle and polarisation dependence. There is a need to overcome these obstacles to enable better performance of metamaterials and increase areas for application. Three dimensional and /or multi-layer metamaterials offer a way to overcome the limitations of conventional two dimensional metamaterials. In addition, 3D metamaterials promise better efficiency for metamaterials with a prospect for lower permittivity structures for radome applications.

Fabrication of 3D materials are currently conducted using multilayer electron beam lithography or direct laser writing which limits the size and frequency of operation of fabricated devices. Additive manufacturing techniques will be studied with the aim to obtain convenient fabrication techniques comparable to current electron beam processes in order to realise larger 3D metamaterial structures at reasonable cost for industrial application.

Modelling of 3D metamaterials also poses a challenge. Enhanced modelling techniques are required to accurately predict the performance of structures designed. Full wave methods and quasi-optical techniques will be explored to realise adequate models for prediction of measured results from fabricated samples.

The initial primary tasks will comprise

1. Investigation of broadband metamaterials, potentially via the use of multilayer or 3d metamaterials that enables multiple resonances to be cascaded to extend the bandwidth response. Emphasis will be on relatively constant constitutive parameters across the operating frequency band.

2. Investigation of effective dielectric constant of metamaterials embedded in a substrate. It is of interest to deploy relatively low dielectric constant materials for antennas and radomes. Typically, materials with dielectric constants of 4 or less are used to construct antennas and radomes in either a homogeneous or multilayer sandwich structure. Embedding metamaterials in dielectric substrates offer the possibility of reducing the effective permittivity of the substrates. Following on from the previous task, a broadband arrangement of metamaterials should be embedded in a chosen substrate to observe the impact on the effective dielectric constant.

3. Investigation of polarisation twisters using metamaterials embedded in a substrate. Typical twisters use four overlaid printed grids of conductors. This classic design suffers from poor performance at higher frequencies due to coupling effects and is also difficult to manufacture at these frequencies due to reduced dimensions.

4. Investigation of manufacturing techniques for 3d Metamaterials. The use of conventional and innovative manufacturing techniques for metamaterials is also of interest. Low cost production processes should be investigated and the role of additive manufacturing should be highlighted in the application of new manufacturing techniques. The role of any other relevant emerging technologies for the prototyping and manufacture of antennas and radomes with metamaterials will be of great benefit to the aerospace industry and is worth investigating.

Funding Notes

The 4 year studentship is funded 50:50 by an industrial sponsor and the College of Engineering, Mathematics and Physical Sciences at the University of Exeter. It is of value around £105,000, which includes £13,000 towards the research project (travel, consumables, equipment etc.), tuition fees, and an annual, tax-free stipend of approximately £16,500 per year for UK/EU students.

Eligible candidates: UK/EU nationals only due to industry sponsor requirements.

How good is research at University of Exeter in Physics?

FTE Category A staff submitted: 40.20

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2020
All rights reserved.