FREE PhD Study Fairs in Sheffield & Edinburgh | REGISTER NOW FREE PhD Study Fairs in Sheffield & Edinburgh | REGISTER NOW

Smart Photon Delivery via Reconfigurable Optical Fibres


   Faculty of Engineering and Physical Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof David Richardson  No more applications being accepted  Competition Funded PhD Project (UK Students Only)

About the Project

Supervisory Team:   Prof David Richardson

Project description

High power fibre lasers (HPFLs), developed first at the University of Southampton, have advanced beyond recognition. Output powers have increased by more than four orders of magnitude in the past two decades, reaching 10kW in a single beam. They are widely used in the most advanced production lines for cutting, welding, 3D printing and marking of a myriad of materials from glass to steel. However, we are now close to the maximum power that can be produced by a single fibre laser. To continue increasing the power, new solutions must be found. Just as modern computers contain large numbers of processor cores rather than a single high-speed core, the future for HPFLs is in the combination of multiple fibre lasers.

The successful combination of large numbers of fibre lasers would transform manufacturing. Such a breakthrough could enable control of all light properties (such as wavelength, polarization, intensity, and phase) to create dynamically reconfigurable structured light that changes “on the fly” depending on the specific application. Such a “digital fibre laser” would not only make the UK a more prosperous nation, but also allow us to protect against malevolent drones, build the next generation of efficient, compact particle accelerators, clean-up space debris, treat nuclear waste, and all-in-all make the world a better, cleaner, greener, and safer place. The University of Southampton has recently been awarded £6million to solve the challenges associated with the creation of the “digital fibre laser”, and you will be part of this team effort.

You will be focussing on the exciting area of programmable beam shaping for HPFLs. You will be working with a range of speciality optical fibres and opto-mechanical transducers, to provide the building blocks for reconfigurable beam shaping and ‘smart photon’ delivery. Transforming traditional Gaussian beams into bespoke profiles, such as flattop or annular beams, has proved to be highly beneficial in several advanced material processing applications, such as ablation, cutting, drilling, scribing, and annealing, and you will need to understand the requirements for each type of application and the associated optimal beam profiles. You will be using numerical modelling to define the optimal parameters and cross-sections for the speciality fibres, and then solve the experimental challenges associated with the integration of a range of mechanical and piezoelectric acousto-optic transducers for sub-millisecond time scale beam shaping and polarisation control, over fibre length longer than 100 metres.

Entry Requirements

A very good undergraduate degree (at least a UK 2:1 honours degree, or its international equivalent).

Closing date: applications should be received no later than 31 August 2022 for standard admissions, but later applications may be considered depending on the funds remaining in place.

Funding: For UK students, Tuition Fees and a stipend of £16,062 tax-free per annum for up to 3.5 years.

How To Apply

Applications should be made online. Select programme type (Research), 2022/23, Faculty of Physical Sciences and Engineering, next page select “PhD ORC (Full time)”. In Section 2 of the application form you should insert the name of the supervisor David Richardson

Applications should include:

Research Proposal

Curriculum Vitae

Two reference letters

Degree Transcripts to date

Apply online: https://www.southampton.ac.uk/courses/how-to-apply/postgraduate-applications.page

For further information please contact: [Email Address Removed]

PhD saved successfully
View saved PhDs