University of East Anglia Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
University of Nottingham Featured PhD Programmes

Spin Waves Dynamics for Spintronic Computational Devices

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Spin waves (magnons) are fundamental excitations found in magnetically ordered materials. Recently spin wave phenomena have been proposed as a new paradigm for dedicated computational tasks due to the inherently low energy of this type of excitation. Spin waves have high potential for nanostructured magnetic devices able to perform a set of important computational tasks such as pattern recognition, convolution, and Fourier transformations. Additionally, the generation, detection and manipulation of spin waves are key enabling technologies for microwave processing, magnetic sensing as well as for unconventional logic.

In order to understand the potential of spin waves, the physics of new materials needs to be explored. It has very recently been realized that high frequencies, towards THz, can be generated using antiferromagnets and we have already succeeded in demonstrating high frequencies from a synthetic antiferromagnetic system which provides a solid platform for this project. Similarly, exploring the potential of materials with perpendicular anisotropy (PMA) provides exciting avenues for developing spin wave technologies. For example, there is a class of thin films with L10 ordering (MnAl, FePt, MnAlGe, FePtPd) which possess the very high PMA needed to generate high frequencies. Extensions to these ideas are so-called hybrid systems, where in addition to a layer containing perpendicular magnetization other 2D layers with including those with in-plane anisotropy.

In this project, the aim is to develop the understanding necessary to create high frequency spin wave devices using the emerging ideas for new atomically engineered materials. This is an experimental project involving depositing and characterization of atomically layered magnetic films, creating devices using lithography and measuring them using ferromagnetic resonance (FMR) and advanced electrical measurements (e.g. non-local geometry) to understand their high frequency properties. The project will use the state-of-the-art instrumentation and facilities for magnetism and nanodevice research in Manchester where we have a wide range of nanoscale magnetism activities. There will also be opportunities to interact with our existing collaborators in laboratories across Europe.

Funding Notes

Candidates who have been offered a place for PhD study in the Department of Computer Science may be considered for funding. Further details can be found at View Website.

References

[1] R.L. Stamps et al. “The 2014 Magnetism Roadmap” J. Phys. D: Appl. Phys. 47 (2014) 333001
[2] Waring et al. In preparation.
[3] Wohlhüter et al. "Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems" Nature Comms. 6 (2015) 7836.

How good is research at The University of Manchester in Computer Science and Informatics?

FTE Category A staff submitted: 44.86

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to The University of Manchester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.