Kingston University Featured PhD Programmes
University of Kent Featured PhD Programmes
Catalysis Hub Featured PhD Programmes
University of Liverpool Featured PhD Programmes
University College London Featured PhD Programmes

Stratified shear flows in inclined pipes

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr Y Tanino
    Dr D Van der A
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Stably stratified shear flows are ubiquitous in the environment and industrial systems. In the atmosphere such flows are associated with clear air turbulence. In lakes, convective circulation give rise to thermally-driven exchange flows. In subsea umbilical cables, the sequential injection of fluids may give rise to stratified pipe flows. The accurate prediction of transverse mixing and turbulence intensity and structure in such flows is essential for optimizing the injection schemes in subsea umbilicals and predicting contaminant transport in the atmosphere and in aquatic systems.

Despite their ubiquity, many fundamental questions remain. The aim of this project is to improve our understanding of the impact of incline, transverse confinement, density contrast, fluid rheology, and boundary roughness on stratified shear flows. You will generate these flows as a lock exchange in pipes of different diameters, and measure the turbulent velocity field and density distribution using particle image velocimetry (PIV) and laser-induced fluorescence (LIF), respectively. Using your data as a guide, you will develop predictive models for the propagation speed, interface profile, and flow regimes as a function of the experimental variables of your choice.

The successful candidate will interact with members of two Research Groups within the School: (a) Mechanics of Fluids, Soils and Structures Research Group and (b) the Petroleum & Natural Gas Engineering Research Group. Members of these Groups use different combinations of laboratory experiments, field measurements, numerical simulations, and theoretical analysis to study physical processes associated with a wide range of applications, including enhanced oil recovery, flow through aquatic vegetation, wind turbines, and coastal erosion.

The successful candidate should have (or expect to achieve) a minimum of a UK Honours degree at 2.1 or above (or equivalent) in relevant engineering or physical science discipline.

Essential background in fluid mechanics.

Previous laboratory experience and familiarity with MATLAB are essential. Experience in programming and data processing will be an advantage. Good written and spoken communication skills are essential.


Formal applications can be completed online: You should apply for Degree of Doctor of Philosophy in Engineering, to ensure that your application is passed to the correct person for processing.


Informal inquiries can be made to Dr Y Tanino ([Email Address Removed]) with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School ([Email Address Removed]).

Funding Notes

There is no funding attached to this project. It is for self-funded students only.


Tanino, Y., Moisy, F. & Hulin, J-P (2015). 'Lock-exchange flows in inclined pipes: the relevance of the Prandtl mixing length model'. Journal of Turbulence, vol 16, no. 5, pp. 484-502.

How good is research at Aberdeen University in General Engineering?

FTE Category A staff submitted: 38.60

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2019
All rights reserved.