FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

Stress-testing Scotland’s Multifunctional Water Resources Against Changing Systemic Risks

   Hydro Nation Scholars Programme

  ,  Friday, January 06, 2023  Competition Funded PhD Project (Students Worldwide)

About the Project


Water provides multiple services including public supplies for drinking and sanitation, industrial processing, hydropower, irrigation and amenity, in addition to its intrinsic natural functions. Water resources, from the national scale to the local, are subject to diverse stresses affecting both quantity (including flooding and drought) and quality (including new chemical and biological contaminants and ‘cocktail’ mixtures).  Spatially complex land use change and climate change drivers are combining to increase existing risks and leading to new emergent risks not yet on the radar of organisational responses (Brown, 2020).  

The challenge therefore is to improve collective understanding of water resource systems in terms of changing stressors and to strengthen coordinated responses and combined risk ownership across the system to ameliorate negative outcomes. Greater clarity is needed on societal expectations for water and more co-ordinated and spatially targeted responses to reduce risks to acceptable levels and take advantage of synergistic opportunities. This requires further developments and refinements of existing regulatory instruments and policy-based incentives – especially through unrealised potential for increased use of nature-based solutions to deliver multiple benefits.


This project will develop a participatory systems-based template and associated stress-testing approach for Scotland’s water resources. The main objectives are to define the system at multiple levels (including from national scale to catchment/aquifer level), the key stakeholders involved and how their decisions interact, the changing land use and climate drivers acting on the system, and expected outcomes based on current knowledge.


The approach will build on recent advances in defining and mapping systemic risks, as applied to water and driven by changes in land use and climate. A bespoke systems mapping tool (based on causal loop analysis) will be developed drawing from participatory fora with key stakeholders to identify external drivers, system variables and indicators. The stress-testing component builds on an approach that was originally pioneered with stakeholder engagement through the National Ecosystem Assessment to test the qualitative robustness of different response options in a changing world (Brown et al., 2015).  This proposal will extend this approach quantitatively, by pooling data from different data providers in Scotland and the UK and from recent research projects (UK CCCRA3, OpenClim, Assist, FABLE, PROWATER etc.). This will include both climate change and socioeconomic scenarios and baseline data. The systems approach will also allow the quality of data to be assessed (consistency, representativeness etc.) and categorised for further refinement.

To reference systems connections for key water-related issues (water quality; flooding; drought) we propose to use a source-pathways-receptors model. This will also be used to define the interaction of existing regulatory controls. To help categorise spatial and temporal variability across Scotland in terms of the resilience of the national resource we propose to further investigate use of catchment typologies as being explored for drinking water in a current Hydro Nation Scholar project (Vorstius et al., 2019).

The limited work conducted on this topic to-date has focussed on average long-term changes, but this gives only partial insights across the water sector. Hence, the stress-testing method will utilise new higher-resolution data (e.g. from UKCP18) to incorporate changes in year to year and seasonal variability, including systemic risks from changing frequency/magnitude of extreme events, changing spell lengths (dry/wet etc.), and compound events. Land use changes will be referenced against recent work on changing land capability for Scotland, socioeconomic drivers (e.g. food and energy security) and policy objectives (e.g. pathways to Net Zero; woodland expansion).

By referencing key system functions against the range of present and future stresses, the robustness of those functions can be evaluated, also including any co-ordinated interventions designed to improve the capacity or capability of the system, both in terms of supply and demand, but also geographically across the resource system as a whole.

Funding Notes

The Hydro Nation Scholars Programme is an open competition for PhD Scholars to undertake approved projects, hosted within Scottish Universities and Research Institutes. This project will be hosted by the University of Dundee. Full funding is available from the Scottish Government (to host institutions via the Scottish Funding Council). The funding available will be in line with the UKRI doctoral stipend levels and indicative fees. Applicants should have a first-class honours degree in a relevant subject or a 2.1 honours degree plus Masters (or equivalent). Shortlisted candidates will be interviewed on 26th or 27th January 2023.


Brown, I. 2020. Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environmental Science & Policy, 107, 36-45.
Brown, I., Berry, P., Everard, M., Firbank, L. Harrison, P., Lundy, L., Quine, C., Rowan, J.S., Wade, R. and Watts, K. 2015. Identifying robust response options to manage environmental change using an ecosystem approach: a stress-testing case study for the UK. Environmental Science and Policy, 52, 74-88.
Vorstius, C., Rowan, J.S., Brown, I., Frogbrook, Z. and Palarea-Albaladejo, J. 2019. Large-scale risk screening of raw water quality in the context of drinking water catchments and integrated response strategies. Environmental Science & Policy, 100, 84-93.

Email Now

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs