Coventry University Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
University of Sheffield Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Sheffield Featured PhD Programmes

Studentship Opportunity in Nanomaterials based energy storage for self-powered IoT devices

  • Full or part time
  • Application Deadline
    Monday, September 30, 2019
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Energy generation and storage are key for future electronic devices that can entirely self-power from ambient light, vibrations, radio-waves and temperature differences. To support billions of new sensors and devices forecast to be part of the Internet-of-Things (IoT), efficient and low-cost energy storage solutions are required. Recent progress in functional nanomaterials coupled with advanced printing fabrication techniques have opened up possibilities for the development of cost-efficient, solution-processed printed electronic device.

The advancements in conducting, semiconducting and dielectric nanoparticle inks can be used to create multi-functional electronic circuit and devices that are flexible, light-weight and with very low carbon footprint. This technology is particularly well-suited for the IoT devices with sensor and transmission capabilities, aiming for very low-power consumption and utilising energy-harvesting packaging. The challenge remains to develop efficient energy storage with high power and energy densities, that is fully integrated with projected energy scavengers based on rectannaes and photovoltaics.

In this project, we will aim to develop flexible, ultra-thin supercapacitors for IoT devices, utilising ink-jet printable functional nanomaterials. Devices will benefit from nano-structured electrodes, based on very high area templated surfaces and solution processable metal-oxides. Micro-porosity of the films will be enhanced by the growth of hierarchical nanostructures with optimised surface area to increase electrode-electrolyte interactions. The project will involve screening and characterisation of nanomaterials, device fabrication and testing and energy storage optimisation, and full integration with energy harvesters on plastic foils.

This is a three year project, commencing in October 2019.

Entry requirements:
• good masters or 1st class undergraduate degree and strong background in either of the disciplines: electronic engineering, physics, materials, physical chemistry
• outstanding hands-on and analytical skills
• demonstrated excellent aptitude for research

How to apply:
Candidates are asked to contact Dr Maxim Shkunov in the first instance. Applications should be submitted online through the link available on Electronic Engineering PhD web page: https://www.surrey.ac.uk/postgraduate/advanced-technology-institute-phd

During the application process you will be asked to submit relevant documents including a CV, covering letter, transcript of your degree. In the project proposal section of the application please enter the project title given above and identify that you wish to work with Dr Shkunov at Advanced Technology Institute, Electrical and Electronic Engineering.

Funding Notes

The studentship will fully cover University fees for UK/EU students, with a stipend available of approx £15,000 per annum for UK citizens. Self-funded applicants are welcome to apply.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.