Weekly PhD Newsletter | SIGN UP NOW Weekly PhD Newsletter | SIGN UP NOW

Study of vibration isolators for electric vehicle powertrain systems

   Wolfson School of Mechanical, Electrical and Manufacturing Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr N Dolatabadi  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

With the current trend in automotive industry, the share of IC engine has been shrinking for the second consecutive year in the UK market. Hence, the transition to electric powertrains is essential to stay competitive in the automotive market.

Due to removal of internal combustion (IC) engines from many modern vehicle powertrain systems, new NVH (Noise, Vibration and Harshness) sources are unmasked, which is of prime concern for the electric vehicle manufacturers. The new operating conditions for Electric powertrains impose the necessity to reinvestigate the current vibration isolator designs and scrutinise their suitability for the new operating conditions. In addition, the use of electric motors has promoted a wide frequency spectrum of NVH issues including those with higher frequency signatures. Therefore, new techniques are required for integration of advanced electric vehicle powertrain systems to tackle these issues using specifically designed vibration isolators which are optimised for those new operating conditions.

This doctoral project aims at developing a combined experimental and computational approach to study the dynamic characteristics of the conventional and new vibration isolators particularly at high frequencies for current and future advanced vehicle powertrain systems. The student will investigate the elastic and viscoelastic material behaviour used in vibration isolation systems as well as their design characteristics. Appropriate theoretical approaches will be adapted to predict those specific behaviours and understand the underlying physics using experimental techniques. These new analytical and experimental approaches to study such vibration isolators under harsher operating conditions are novel and not been extensively investigated before.

This research will be conducted in the tribodynamics research laboratory at Loughborough University. Prior knowledge of dynamic analysis and experimentation of viscoelastic materials is preferable but not necessary.


Primary supervisor: Dr Nader Dolatabadi

Entry requirements for United Kingdom

Applicants should have, or expect to achieve, at least a 2:1 honours degree (or equivalent) in Mechanical Engineering or a related subject. A relevant master’s degree (MEng or MSc) and/or experience in one or more of the following will be an advantage: automotive powertrain systems, electric vehicles, numerical analysis, multibody systems, contact mechanics, vibration and acoustic analysis, mathematical modelling, dynamic analysis of viscoelastic materials.

English language requirements

Applicants must meet the minimum English language requirements. Further details are available on the International website.

How to apply

All applications should be made online. Under programme name, select `Mechanical and Manufacturing Engineering’. Please quote reference number: P1SAM23-14 in your application. 

Competition for funded entry is high so please ensure that you submit a CV and the minimum supporting documents by the advert closing date. Failure to do so will mean that your application will not be taken forward for consideration.

Apply now

Funding Notes

The Wolfson School’s studentship competition offers the chance for UK and International applicants who are interested in undertaking a PhD to have their full-time studies paid for.
Applicants could receive full or partial funding for 3 years, including a tax-free stipend of £17,668 (2022/23 rate) per annum, and/or a tuition fee waiver.
Studentships will be awarded on a competitive basis to applicants who have applied to advertised projects within Wolfson School with the reference ‘P1-SAM23’. Successful candidates will be notified by the end of March 2023
PhD saved successfully
View saved PhDs