Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Surface functionalized nanodiamonds for antimicrobial applications


   School of Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof H Ye, Prof Marco Rinaldo Oggioni  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

Objective:
The project is to develop novel surface functionalized nanodiamonds for antimicrobial applications against antibiotic resistant bacteria.

Background:
Antimicrobial resistance (AMR) has been identified as one of the main challenges facing the 21st century, and presents a spectrum of complex and multifaceted questions, ranging in scope from fundamental scientific research at the horizons of disciplines through to the behaviour of individuals and society. The need for novel antibiotics comes from the high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics; new methods for reducing bacterial activity and associated infections are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical application and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. Several classes of antimicrobial nanomaterials (such as Ag, Cu, ZnO, Fe3O4, Al2O3, TiO2, SiO2) and nanosized carriers for antibiotic delivery have shown some effectiveness for treating infectious diseases, including those caused by antibiotic-resistant organisms, in vitro and in animal models. In order to be practical in clinical application, these nanomaterials need to fulfil several requirements: broad availability, easy and stable surface functionalization, dispersibility in aqueous solution, non-toxicity and environmental friendliness. Among the many promising nanomaterials, nanodiamond particles (NDs) are receiving increased attention as they comply with all of these prerequisites. NDs demonstrated an innate compatibility with biological environments and low toxicity in comparison with other nanoscale structures. The readily modifiable surface, which is easily functionalised, has enabled NDs to be conjugated to specific molecules, opening a plethora of biomedical applications that include orthopaedic engineering, synthesis of contact lenses , single cell magnetometry, toxicity studies in worms and rodents, cancer stem cell targeting, targeted breast cancer therapy and pharmaceutical delivery. Moreover, NDs can be made hydrophilic or hydrophobic, are available in large quantities, and are proven safe and biocompatible. ND possesses several other advantages over other nanoparticles and objects (like carbon nanotubes or polymer NP), such as not swelling in any solvents, being completely inert, having inherent fluorescence, and long-term thermal (up to 450oC) and mechanical stability. Therefore this project is timely, aiming to develop a nanodiamond-based platform for antimicrobial applications.

Experimental methods of the project are:
(1) to investigate and improve the antimicrobial activities of unmodified and novel surface-modified nanodiamonds (NDs) against the model strains Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli, including multi-drug resistant clinical isolates; (2) to examine the potential of NDs in potentiating or restoring the activity of traditional antibiotics against resistant isolates; (3) to study the synergistic effect of NDs-antibiotics conjugates against multi-drug resistant bacteria. The unique properties of ND in combination with traditional antibiotics will generate new paradigms in antimicrobial research and application.

The Multidisciplinary collaboration will allow us to build a stronger team by providing complementary research skills and knowledge to each existing strength between Materials, Engineering, and Microbiology.

Eligibility:
UK/EU applicants only.

Entry requirements:
Applicants are required to hold/or expect to obtain a UK Bachelor Degree 2:1 or better in a relevant subject.
The University of Leicester English language requirements apply where applicable: https://le.ac.uk/study/research-degrees/entry-reqs/eng-lang-reqs/ielts-65

How to apply:
To apply for the PhD please refer to the guidelines and use the application link at https://le.ac.uk/study/research-degrees/funded-opportunities/bbsrc-mibtp
Please also submit your MIBTP notification form at https://warwick.ac.uk/fac/cross_fac/mibtp/pgstudy/phd_opportunities/application/


Project / Funding Enquiries: [Email Address Removed]
Application enquiries to [Email Address Removed]

Funding Notes

4 year fully funded BBSRC MIBTP studentship
UK/EU fees and stipend at UKRI rates. For 2020 this will be £15,285 pa

References

1) H. J. Kim, Diamond Nanogel-Embedded Contact Lenses Mediate Lysozyme-Dependent Therapeutic Release, ACS Nano 8 (2014) 2998.

2) X. Wang et al, Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells, ACS Nano 8 (2014) 12151.

3) Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL; BIOHYPO Consortium. Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS One. 2014 Jan 23;9(1):e86669.