Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Sustainable Aviation Fuel Production from Biomass and Waste using a Biorefinery Approach

   Chemical Engineering

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr Kok Siew Ng  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

About the programme

Aviation fuel is conventionally supplied from kerosene produced from crude oil. The aviation industry accounts for nearly 2% of global CO2 emissions. There is hence a pressing need worldwide to improve the uptake of sustainable aviation fuels (SAF) in order to tackle various challenges in environmental, social and economic aspects of the industry. SAF can be produced from biomass and organic waste through various technologies and production routes such as hydroprocessed esters and fatty acids (HEFA), Fischer-Tropsch (FT), alcohol-to-jet (ATJ), and so on. Various challenges need to be addressed to improve the uptake of SAF. These include the availability of renewable feedstock, robustness of the conversion and pollution mitigation technologies, and sustainability performance of the whole system. This research project will focus on developing novel biorefinery system design that is highly integrated, flexible and robust for the production of SAF. Biomass is regarded as a carbon-neutral feedstock and can potentially achieve negative carbon emissions if carbon capture, utilisation and storage (CCUS) facilities are embedded within the biorefinery system.

Chemical engineering principles and process integration techniques are required to design the biorefinery systems in order to achieve maximum resource efficiency and minimum environmental impact by recovering by-product and waste streams into value-added products.

What would you expect from this project?

• Computational modelling: This project will require simulation modelling and optimisation techniques using software such as Aspen Plus, Matlab and GAMS, and will also involve software development using Python.

• Sustainability assessment: This research will involve rigorous sustainability assessment including techno-economic analysis and environmental life cycle assessment (LCA). LCA software such as SimaPro is required.

Applicants should have received a First or Upper Second Class honours degree in Chemical Engineering, Environmental Engineering, Chemistry or a similar discipline. Applicants should be highly motivated, able to work independently and in a team, and have good written and verbal communication skills.

Engineering (12)


1. Ng, K.S., Farooq, D., Yang, A., 2021. Global biorenewable development strategies for sustainable aviation fuel production. Renew. Sustain. Energy Rev. 150: 111502.
2. Farooq, D., Thompson, I., Ng, K.S., 2020. Exploring the feasibility of producing sustainable aviation fuel in the UK using hydrothermal liquefaction technology: A comprehensive techno-economic and environmental assessment. Cleaner Engineering and Technology. 1: 100010.
3. Martinez Hernandez, E., Ng, K.S., 2018. Design of biorefinery systems for conversion of corn stover into biofuels using a biorefinery engineering framework. Clean Technol Envir. 20(7): 1501-1514.
4. Sadhukhan, J., Ng, K.S., Martinez Hernandez, E., 2014. Biorefineries and chemical processes: design, integration and sustainability analysis, Wiley. ISBN: 9781119990864.
5. Ng, K.S., Sadhukhan, J., 2011. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform. Biomass Bioenergy, 35 (7): 3218-3234.
6. Ng, K.S., Sadhukhan, J., 2011. Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass Bioenergy, 35 (3): 1153-1169.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

 About the Project