Coventry University Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
Cardiff University Featured PhD Programmes

Tailoring molecular functions by O-annulation of polycyclic aromatic hydrocarbons

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Prof D Bonifazi
  • Application Deadline
    No more applications being accepted
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Considering that the leading cause of degradation is related to aerobic oxidations, the access to disposable smart labels chemo-selectively responding to O2 could be a revolutionary in many field (food packaging, medical products, etc).

It is with this idea in mind that this project will develop O-annulated aromatic hydrocarbons that, through a selective reaction with O2, irreversibly retain an oxidising event and successively communicate it as a colour change under a human input.

To achieve it, we plan to prepare hybrid O-doped chromogenic polycyclic aromatic hydrocarbons that, in the presence of O2 and light, will act as a photosensitiser producing singlet O2. The reactive O2 will react with the chromogenic material itself to give an irreversible change. Integration of this material into an electrochromic display will result in a device that will operate irreversibly after it has been exposed to O2 and reversibly when not exposed to O2.


Building on the know-how developed in Bonifazi’s group about peri-xanthenoxanthene (PXX), we inferred that O-doped molecular graphenes including anthranyl subunits could first sensitise 1O2, and then react with it to give endoperoxide (EPO) species breaking the conjugation.

The idea is to gain control of the synthesis of anthranyl synthons that can be exploited for programming oxo-substituted oligoacenes to be tranformed into a series of regularly O-doped ribbons. Aiming at controlling the 1O2-sensitising properties as well as the reactivity to form EPO, it has been envisaged to synthesised ribbons with different lengths, periphery topology, and doping ratio.

All newly prepared molecules will be thoroughly characterized by means of photophysical and electrochemical (CV, DPV and spectroelectrochemistry) techniques, as well as theoretical modelling.

The self-sensitizing properties of the O-doped PAHs derivatives in the presence of O2 will be tested as well as their electrochromic properties both in solution and in a prototype device. We hope to blend the O-doped PAH derivatives into inert polymeric films and study both the formation of the EPOs and their effect on the electrochromic properties. The idea is to be able to sense O2 level of at least 0.01%, that is considered the standard atmosphere at which a O2-sensitive good should be appropriately packaged

Project aims and methods

This training approach will not only bestow the student with a complete skill-set (see below) but it will generate awareness on the incredible research potential organic chemists can achieve through the O-doping route.

Additional topics included in the training are:
•study of the fundamentals of photophysics and photo/electro-induced processes
•design of photo- and electrochromic molecules and materials
•moulding of the functional materials
•engineering of electrochromic sensing prototypes.

More specific project skills will involve:
•running air-sensitive organic reactions
•purifying and isolating organic reaction products
•compound characterisation; use of 1H and 13C NMR, IR and MS and GC
•atomic Force Microscopy
•HPLC and GPC analysis systems
•scanning Electron Microscopy & Scanning Tunneling Microscopy
•thermal Gravimetric Analysis
•emission and UV-Vis-NIR Spectrophotometer
•cyclic-voltammetry and spectroelectrochemistry
•electrochromic devices
•X-Ray Diffraction
•device engineering.

Start date: 1st October 2019

Supervisor: Professor Davide Bonifazi -

Funding Notes

Full awards (fees plus maintenance stipend) are open to UK Nationals and EU students who can satisfy UK residency requirements. To be eligible for the full award, EU Nationals must have been in the UK for at least three years prior to the start of the course for which they are seeking funding, including for the purposes of full-time education.

Please click below for more information

Related Subjects

How good is research at Cardiff University in Chemistry?

FTE Category A staff submitted: 23.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2019
All rights reserved.