Targeting senescence to ameliorate ageing and treat cancer and other age-related diseases


   Molecular and Cell Biology

   Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Ageing is a biological process that affects all humans. Despite the scientific advances of the past decades, the mechanisms that lead to ageing are not fully understood. Evidence suggests that accumulation of old (senescent) cells in tissues plays a critical role in the appearance of the symptoms associated with age, as well as age related diseases such as cancer, Alzheimer’s, diabetes or fibrosis. Indeed, recent experiments in mice have showed that when senescent cells are eliminated from tissues, healthspan and lifespan increases substantially. Clinical trials have already started to test drugs that kill senescent cells (called senolytics), although they have many off-target effects.

Our work on senescence is aimed at (i) better understanding why organisms age and (ii) providing the basis for new treatments that could be applied to slow down and improve ageing and age-related diseases. We have been the first to identified novel membrane markers of senescence (the “senescent surfacome”) that can be used to detect and selectively kill senescent cells1,2. We were one of the firsts to use nanoparticles to achieve this3 and next we designed an antibody-drug conjugate against senescent cells that is the first in a new class of targeted senolytics4. Moreover, we have used drugs that inhibit the formation of senescent cells to extend the lifespan and healthspan of mice and improve their cognitive functions in old age5. We are characterizing these and other novel targeted therapies and we are testing them in vitro and in vivo, in order to define novel anti-senescent strategies that could be applied clinically in the near future and thus improve ageing and age-related diseases in humans, with specific emphasis on cancer.

Entry requirements

  • Those who have a 1st or a 2.1 undergraduate degree in a relevant field are eligible.
  • Evidence of quantitative training is required. For example, AS or A level Maths, IB Standard or Higher Maths, or university level maths/statistics course.
  • Those who have a 2.2 and an additional Masters degree in a relevant field may be eligible.
  • Those who have a 2.2 and at least three years post-graduate experience in a relevant field may be eligible.
  • Those with degrees abroad (perhaps as well as postgraduate experience) may be eligible if their qualifications are deemed equivalent to any of the above.
  • University English language requirements apply: https://le.ac.uk/study/research-degrees/entry-reqs/eng-lang-reqs/ielts-65

To apply

Carefully read the application advice on our website below and submit your PhD application. 

https://le.ac.uk/study/research-degrees/research-subjects/molecular-and-cell-biology

Biological Sciences (4) Medicine (26)

Funding Notes

Self funded applicants or those who have their own sponsorship can apply.

References

1Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, Barlev N, Saldanha GS, Pritchard C, Cain K and Macip S. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014 Nov 20;5:e1528.
2Althubiti M, Macip S. Detection of Senescent Cells by Extracellular Markers Using a Flow Cytometry-Based Approach. Methods Mol Biol. 2017;1534:147-153.
3AE Ekpenyong-Akiba, F Canfarotta, B Abd H, M Poblocka, M Casulleras, ... S Macip. Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horizons 4 (3), 757-768
4Poblocka M, Bassey AL, Smith VM, Falcicchio M, Manso AS, Althubiti M, Sheng X, Kyle A, Barber R, Frigerio M, Macip S. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep. 2021 Oct 13;11(1):20358. doi: 10.1038/s41598-021-99852-2.
5Ekpenyong-Akiba AE, Poblocka M, Althubiti M, Rada M, Jurk D, Germano S, Kocsis-Fodor G, Shi Y, Canales JJ, Macip S. Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. Aging Cell. 2020 Jan;19(1):e13079. doi: 10.1111/acel.13079. Epub 2019 Nov 17.

Register your interest for this project


Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.