Imperial College London Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Oxford Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
University of Reading Featured PhD Programmes

Temporal and Spatial Carbon Cycle Dynamics of an Evolving Tropical Delta (IAPETUS 2 Project)

Project Description

Deltas and associated wetlands are a relatively minor surface feature, comprising less than 4-6% of the terrestrial land area. However, deltas have a disproportionately critical role in carbon stocks and fluxes, a role that is subject to dynamic changes both natural and anthropogenic. Deltas are dynamic systems that actively migrate across the landscape. Consequently, their connections to the landscape, river network, climate and population evolve over time. Understanding this evolution from a carbon cycle perspective is critical at a time of significant climatic transition, resulting from atmospheric greenhouse gas (GHG) accumulation.

Carbon dioxide (CO2) and methane (CH4) are significant greenhouse gases adding to anthropogenic climate disruption, and the key gases degassed from delta / wetland regions. Fluxes of these GHGs vary significantly over time and space and evidence suggests deltas can act as both sinks to CO2 and significant sources of CH4. This balance is dependent on factors such as inundation patterns, availability of organic substrates and water chemistry / salinity. Consequently, this balance is likely to change as deltas evolve and quantifying this effect is crucial to effectively modelling these systems in a changing climate.

Deltas are crucial to understanding the role of sediment export and gas ebullition as they are carbon ‘hotspots’ in the global carbon cycle. They play a key role in modulating how much carbon is exported from what are the transitional areas between freshwater and marine systems. These systems have also been recognised as important accumulation zones for a range of riverine sediments, accumulation that can subsequently lead to organic matter processing and GHG degassing.

Thus, a framework is needed that:
i) quantifies fluxes of GHGs from modern delta ecosystems, sufficiently capturing spatial and temporal variability.
ii) assesses the degree to which hydrological connectivity in an evolving delta affects GHG fluxes and carbon storage.
iii) identifies the landscape and biogeochemical controls on the GHG efflux strengths
iv) estimates the amount of carbon stored in various forms on the delta.

Making a significant contribution to this framework is the over-arching objective of this Ph.D. but it will also work towards producing a process-based model that describes delta carbon cycling more generally and the relevant controls / drivers. This Ph.D will feed into the broader concept of sustainable delta futures, underpinned by the UKRI GCRF Living Deltas Hub, of which Dr Bass and co-supervisor Dr Andy Henderson are Co-investigators. This PhD aims to derive a detailed understanding of delta development and its effect on regional carbon dynamics.

To address the research aims the student will conduct their research across a transect of the Ganges-Brahmaputra-Magna (GBM) delta, primarily situated in Bangladesh. The GBM delta is currently migrating in an eastward direction, leading to westerly regions losing hydrological connectivity with the parent river, consequently significantly changing the underlying hydrology and thus landscape functioning. By evaluating carbon dynamics in and east-west transect (Fig. 2), the project will use a space-for-time approach to constrain our current understanding of delta carbon fluxes.

To fulfill the overarching aims and research questions this project will use a combination of field sensors and laboratory-based analysis techniques. The student will be trained in the measurement of geochemical parameters that provide information on the aquatic carbon cycle (e.g., dissolved in/organic carbon concentrations, CO2 / CH4 efflux, dissolved oxygen) as well as the concentrations of dissolved CO2 and CH4. From initial field-surveying, sites will be identified with sufficient CO2 and/or CH4 dynamism that mechanisms of transfer can be studied (e.g., diffusion vs. ebullition fluxes). Where appropriate, stable and radiocarbon isotopes will be utilised in order to identify the sources and formation processes of aquatic GHG fluxes. Combined with GIS techniques the student will quantify landscape effect on regional scale delta GHG budgets.

A number of Holocene sediment cores will be recovered from across the GBM representing the gradient of delta stability. These cores will be used to establish longer-term records of carbon accumulation on the GBM and how a deltas stability controls the potential stocks of carbon. Total Carbon/Total Inorganic Carbon/Total organic carbon will be determined using an Analytik Jena elemental analyser, which when coupled with sedimentology and sediment geochemistry (lithology, grain size, XRF) and radiocarbon geochronology will be used to establish Holocene carbon accumulation rates and environmental change on the GBM.

This is a jointly supervised project between the University of Glasgow (Dr Bass & Dr Gulliver) and Newcastle University (Dr Andrew Henderson).

Funding Notes

Application guidelines can be found via the link View Website.

To apply, follow the link: View Website.

How good is research at University of Glasgow in Geography, Environmental Studies and Archaeology?

FTE Category A staff submitted: 13.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.