University of Edinburgh Featured PhD Programmes
Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Imperial College London Featured PhD Programmes
Life Science Zurich Graduate School Featured PhD Programmes

The Anthropocene geochemical footprint in the Great Barrier Reef (CENTA2-SGGE11-ZINK1)

Project Description

Many geo-ecosystems around the world are increasingly modified by Humans. Coral Reefs are no exception. Geologists are currently debating the formalisation of the term Anthropocene as a new chronostratigraphic geological unit. The selection of a Global Boundary Stratotype Section and Point (GSSP) candidate section for the Anthropocene is a requirement in seeking formalisation of the term as a potential new unit of the International Chronostratigraphic Chart.

Currently, the GSSP candidate sites and archives are chosen by an international working group that will strive to provide compelling evidence for a transition from the Holocene to the Anthropocene. All sections will be in borehole/drill cores, most showing annually resolved laminations that can be independently dated radiometrically to confirm a complete succession extending back to pre-Industrial times. Airborne signals provide the most geographically widespread and near-isochronous proxies, applicable across most of these environments, which are expected to provide distinctive markers at around the mid-20th century, the preferred start/base of the Anthropocene. The question arises if coral reefs provide clear Anthropocene markers which set them apart from previous reef development stages in Earth history.

Coral skeletal proxy archives are a prime GSSP boundary candidate from the tropical oceans due to their yearly growth banding providing highly precise age control over several centuries locking a suite of geochemical information into their skeleton (Waters et al., 2018; Hennekamet al., 2018). Corals have been shown to record climatic and environmental change over several decades to centuries related to natural processes. Furthermore, coral provide invaluable records of anthropogenic activity, e.g. CO2 uptake by the oceans (Suess effect; Swart et al., 2010), radiocarbon bomb spikes, radionuclide distributions, heavy metal discharge and eutrophication (Lee et al., 2014). All this makes corals a key GSSP candidate from the oceans to define the start of the Anthropocene.

Entry Requirements:

UK Bachelor Degree with at least 2:1 in a relevant subject or overseas equivalent.

Available for UK and EU applicants only.

Applicants must meet requirements for both academic qualifications and residential eligibility:

How to Apply:

Please follow refer to the How to Apply section at and use the Geography Apply button to submit your PhD application.

Upload your CENTA Studentship Form in the proposal section of the application form.

In the funding section of the application please indicate you wish to be considered for NERC CENTA Studentship.

Under the proposal section please provide the name of the supervisor and project title/project code you want to apply for.

Funding Notes

This project is one of a number of fully funded studentships available to the best UK and EU candidates available as part of the NERC DTP CENTA consortium.

For more details of the CENTA consortium please see the CENTA website: View Website.

Applicants must meet requirements for both academic qualifications and residential eligibility: View Website

The studentship includes a 3.5 year tuition fee waiver at UK/EU rates

An annual tax free stipend (For 2019/20 this is currently £15,009)

Research Training Support Grant (RTSG) of £8,000.


Hennekam, R., Zinke, J., ten Have, M., Brummer, G.J.A. and Reichart, G.-J. (2018) ‘Cocos (Keeling) corals reveal 200 years of multi-decadal modulation of southeast Indian Ocean hydrology by Indonesian Throughflow’, Paleoceanography and Paleoclimatology, 33, doi: 10.1002/2017PA003181.

Lee et al. (2014) ‘Coral based history of lead and lead isotopes of the surface Indian Ocean since the mid-20th century’, Earth and Planetary Sci. Letters, 598, pp. 37‐47.

Pelejero, C. et al. (2005) ‘Preindustrial to modern interdecadal variability in coral reef pH.’ Science, 309, 2204-2207.

Swart et al. (2010) ‘The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans.’ Geophys. Res. Letters, 37, L05604, doi:10.1029/2009GL041397.

Waters et al. (2018) ‘Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates.’ Earth Science Reviews, 178, 379-429.

Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.