University of Sheffield Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Hull Featured PhD Programmes

The Development of a Multi-Technique Approaches Towards the Study and Characterisation of Asphaltene Structures and Sub-Structures


Warwick Centre for Doctoral Training in Analytical Science

About the Project

Supervisor: Prof. John Hanna (Department of Physics, University of Warwick) & Co-Supervisor: Prof Peter Dowding (Chief Scientist, Infineum UK Ltd.)

This PhD project is part of a larger, long-standing collaboration between the University of Warwick and Infineum UK Ltd in Milton Hill. Heavy Fuel Oil (HFO) is the high viscosity, tar-like substance, which is used to power ships in international waters. It remains after the distillation and subsequent cracking of crude oil to produce lighter fraction. HFO contains asphaltenes, resins, maltenes and many other low and high molecular weight organic fractions that can exhibit direct and indirect involvement in significant environmental problems. Asphaltenes are the complex fraction of crude oil which is soluble in aromatic solvents (e.g. toluene, etc.) but not in aliphatic solvents (e.g. pentane, etc.), which are mixtures of complex condensed aromatic hydrocarbons with sidechains up to C30. They also contain hetero-aromatic groups and bi- or polyfunctional molecules with nitrogen-based functionalities (i.e. amines, amides, etc.) and/or oxygen-based functionalities (e.g. ketones, amides, phenols, carboxylic acids, etc). In addition, their long-range structure can accommodate transition metal species such as Ni2+, Co2+ and V4+ which are complexed with the pyrrole N atoms to form metalated porphyrin ring structures. Numerous techniques have been developed to separate asphaltene fractions by functionality and properties (i.e. by their acid-base characteristics and their interfacially active components) which can determine/govern their ability leave macroscopic deposits in engine and exhaust environments. The aim of this PhD project will be to develop a combined methodology involving solid state NMR techniques, EPR measurements, vibrational spectroscopy and mass spectrometry in order to establish an overall protocol for the characterisation of these complex systems. In particular, one of the main objectives is to be able to detect and effectively measure the interfacially active fragments of the asphaltene networks and to understand their structure-function characteristics, in comparison/contrast to the remaining asphaltene fragments. Where possible, the structures of fragments containing heteroatoms and the influence of transition metal coordination will be determined. These outcomes will be rationalised against established environmental and engineering scenarios known to have a significant asphaltene involvement.

For further details please contact Professor John Hanna:

Start date: 27 September 2021

Apply now


Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Warwick will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2021
All rights reserved.