Coventry University Featured PhD Programmes
University of Kent Featured PhD Programmes
John Innes Centre Featured PhD Programmes
Catalysis Hub Featured PhD Programmes
University College London Featured PhD Programmes

The investigation of alternative solid propellants in hall effect thrusters

  • Full or part time
  • Application Deadline
    Sunday, June 30, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Electric propulsion for small satellites is currently revolutionizing satellite engineering, for example electric propulsion is to be used to orbit raise the OneWeb constellation of satellites. Hall Effect Thrusters (HET’s) are often the best option for high performance electric propulsion, offering good thrust and specific impulse values. Within the thruster the propellant, typically xenon, is ionized, and accelerated to high velocities. Xenon offers reasonable levels of thrust, is stable and non-reactive, and is almost exclusively used in space. However it is expensive, its storage density is low, and alternatives have considerably lower ionization potentials.

There is a strong interest in developing HET’s that utilize alternative propellants, especially so for micro-satellites (< 100 Kg) where cost and volume are particularly constrained. Considerable work is now on-going in the research community to investigate using iodine, bismuth, and other elements. It has been demonstrated that these offer performance comparable to xenon, but in a smaller system volume and at less cost. There are various start-up companies trying to initiate the exploitation of the technology, for example Exotrail, Orbion Space Technologies, or Orion Fusion, demonstrating the strong industrial interest in this technology.

This PhD scholarship will consist of developing a Hall Effect Thruster to operate on alternative propellants, focusing on zinc, magnesium and iodine. Good initial work has been completed on developing such a system at Southampton, including a prototype thruster and propellant delivery system. This PhD scholarship will extend the work towards an investigation of the thruster’s operational window, thrust measurements, and an understanding of the thruster operation through various probes.

The work will be in collaboration with OHB Sweden, Sweden’s leading space satellite company. They will provide first phase guidance, expertise on the HET results and views on future architecture. The studentship will include the possibility of an industrial placement for several months for the student, likely in their second year of studies.

The PhD student will work within the dynamic research group of Dr Charlie Ryan, Lecturer (Assistant Professor) within the Astronautics Group at the University of Southampton; https://www.southampton.ac.uk/engineering/about/staff/cnr1e15.page

Funding and Eligibility

This 3 year studentship covers UK/EU level tuition fees and provides an annual tax-free stipend at the standard EPSRC rate, which is £15,009 for 2019/20.

The funding available is competitive and will only be awarded to an outstanding applicant. As part of the selection process, the strength of the whole application is taken into account, including academic qualifications, personal statement, CV and references.

For further guidance on funding, please contact

How to Apply

Click here to apply and select the programme - PhD in Engineering and the Environment. Please enter the title of the PhD Studentship in the application form.

How good is research at University of Southampton in General Engineering?

FTE Category A staff submitted: 192.23

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.