Coventry University Featured PhD Programmes
Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
The Francis Crick Institute Featured PhD Programmes
Cardiff University Featured PhD Programmes

The physics and biology of the ocean carbon sink: how air-sea interactions affect organic carbon uptake and sequestration in the Southern Ocean.

  • Full or part time
  • Application Deadline
    Friday, January 03, 2020
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The water masses leaving the Southern Ocean form a major conduit of atmospheric carbon into the interior of the global ocean. Part of this transport is via the ‘solubility carbon pump’ whereby CO2 dissolved in seawater is transported into the interior ocean. Another component is via the ‘biological carbon pump’ (BCP), a range of processes turning inorganic carbon in surface waters into organic material which then propagates to depth via gravitational sinking, mixing, and subduction. A key aspect of the BCP is how deep sinking organic material penetrates across layers of different density before being converted into soluble form; the potentially large consequences of variability of the water masses in which the carbon ultimately finds itself are still uncertain. The Southern Ocean is the formation region for globally significant mode waters which may transport the majority of erstwhile organic carbon into the Atlantic, Pacific, and Indian Oceans. Inter-annual variability in atmospheric forcing (e.g. winds, heating, freshwater input) can exert a strong influence on mixed layer depth and hence on the volume of mode waters formed in this region. The consequences for the BCP of the Southern Ocean remain unquantified.

Funding Notes

You can apply for fully-funded studentships (stipend and fees) from INSPIRE if you:
Are a UK or EU national.
Have no restrictions on how long you can stay in the UK.
Have been 'ordinarily resident' in the UK for 3 years prior to the start of the project.

Please click View Website for more information on eligibility and how to apply


Sallée, J. B., et al. (2010). "Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode." Nature Geoscience 3: 273.
Marsay, C. M. et al. (2015) Attenuation of sinking particulate organic carbon flux through the mesopelagic. Proceedings of the National Academy of Sciences, 112 (4), 1089-1094.

How good is research at University of Southampton in Earth Systems and Environmental Sciences?

FTE Category A staff submitted: 68.62

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.