University of Sheffield Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Reading Featured PhD Programmes

The role of zinc in the adaptation of diatoms to conditions of polar oceans (MOCK_UENV22ARIES)

   School of Environmental Sciences

About the Project

Primary Supervisor - Professor Thomas Mock

Secondary Supervisor - Professor Cock van Oosterhout (UEA, ENV)

Supervisory Team - Dr Glen Wheeler (The Marine Biological Association of the United Kingdom), Prof. Naihao Ye (), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences

Scientific background:

Diatoms are the main primary producers in polar oceans, where photosynthesis is largely limited by seasonal fluctuation in light, temperature, and the extent of sea ice. Additionally, essential trace metals such as iron and zinc play an important role in controlling the biomass of polar primary producers. Polar diatoms appear to have a particularly high demand for zinc, thereby largely determining zinc distribution throughout the global ocean. The reason for the enhanced requirement of zinc in polar diatoms remains enigmatic. However, the first genome sequences from a polar diatom and other cold-adapted algae revealed adaptive expansions of regulatory gene families (e.g. transcription factors) containing zinc-binding domains. The elevated concentrations of zinc in polar oceans may thus have aided the expansion of these regulatory genes with zinc-binding domains. As specific gene families involved in photosynthesis and carbon fixation were both co-expanded and co-expressed, it suggests that zinc plays an important role in regulating and therefore supporting photosynthetic growth in polar phytoplankton.

Research methodology:

The main aim of this project is to produce the first molecular genetics and physiological data on the role of zinc in the adaptation of cold-adapted diatoms. The student will work in the laboratory with a cold-adapted model diatom and will apply the latest reverse genetics tools (e.g. CRISPR-Cas) in combination with sequencing

(RNA/DNA) and photosynthesis measurements to characterize the role of conserved low-temperature inducible regulatory genes with zinc-binding domains (e.g. zf-MYND) that are co-regulated with photosynthesis genes. A combination of these experimental approaches will provide first insights into the role of zinc-binding domains in supporting photosynthesis in polar marine microalgae.


The student will gain skills in the latest reverse-genetics tools such as CRISPR-Cas and sequence analyses, algal cultivation, photosynthesis measurements, bioinformatics, and evolutionary biology. Training will also be provided in the field of biogeochemistry, polar ecology, and oceanography.

Person specification:

A Bachelor's degree in Biological Science or equivalent. We are looking for an enthusiastic student who is excited about applying diverse techniques from the field of molecular microbiology to understand the adaptation and evolution of microalgae in polar oceans.

For more information on the supervisor for this project, please visit the UEA website

The start date is 1 October 2022

Funding Notes

This project is funded by ARIES NERC DTP and will start on 1st October 2022.

Successful candidates who meet UKRI’s eligibility criteria will be awarded a NERC studentship covering fees, stipend (£15,609 p.a. for 2021-22) and research funding. International applicants (EU and non-EU) are eligible for fully-funded UKRI studentships.

ARIES students benefit from bespoke graduate training and £2,500 for external training, travel and conferences.

ARIES is committed to equality, diversity, widening participation and inclusion. Academic qualifications are considered alongside non-academic experience. Our recruitment process considers potential with the same weighting as past experience.

For information and full eligibility visit View Website


1) Faktorová et al. (2020) Genetic tool development in marine protists: Emerging model organisms for experimental cell biology. Nature Methods 17, 481-494
2) Mock et al. (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536-540.
3) Roshan, S., DeVries, T., Wu, J., and Chen, G. (2018). The Internal Cycling of Zinc in the Ocean. Global Biogeochemical Cycles 32, 1833-1849.
4) Vance, D., Little, S.H., de Souza, G.F., Khatiwala, S., Lohan, M.C., and Middag, R. (2017). Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience 10, 202.

Email Now

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs