FREE Virtual Study Fair | 1 - 2 March | REGISTER NOW FREE Virtual Study Fair | 1 - 2 March | REGISTER NOW

The Shackleton Range of East Antarctica: unravelling a complex geological history via an integrated geochronological, geochemical and geophysical approach


   Polar Science for Planet Earth

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Teal Riley, Dr Nicholas Gardiner  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

The proposed project is a multidisciplinary geochemical, geochronological and geophysical study on rock collections and aeromagnetic data from the remote Shackleton Range of East Antarctica. This detailed analysis will substantially improve the geological understanding of the region and allow us to evaluate its role in the assembly of Antarctica.

A multi-national effort to determine the geological evolution of the Shackleton Range in East Antarctica was conducted over 25 years ago during two summer expeditions involving several teams of European geologists (Euroshack Expedition). The result was impressive: a unified geology map and an exhaustive collection of rocks and fossils from across the mountainous region, and an analytical programme highlighting its complex history (Tessensohn and Thomson, 1999).

Geological investigations since the Euroshack expedition have been limited, with the most comprehensive studies carried out by Will et al. (2009, 2010). This work has highlighted that the Shackleton Range is situated at a geological crossroads: traces of former mountain building events, many responsible for the suturing of crustal units and the assembly of the East Antarctic continent, either cross the Range or trend toward it (Figure) and have demonstrated that it and East Antarctica form key components in global paleogeographic reconstructions (Liu et al., 2018).

Remote sensing and geophysical surveys conducted since the Euroshack expedition have highlighted evidence that the tectonic history for the Range is incomplete. Some areas have distinct magnetic responses yet rock exposures from these regions are largely unstudied, whereas other areas indicate a greater complexity than current tectonic models suggest. Importantly these unique geophysical signatures apparently continue into the interior of East Antarctic, indicating that an improved geophysical understanding of the Shackleton Range would help underpin a more comprehensive tectonic framework for East Antarctica within the context of supercontinent reconstruction.

The student, based at the British Antarctic Survey (BAS) in Cambridge, will use the 1990’s rock collection of the geophysically distinctive units held at BAS. Using the state of the art geochemistry and geochronology facilities at St Andrews University, a diverse set of isotopic compositions will be measured on grains, portions of grains for a variety of different minerals (e.g. U-Pb and Hf isotopes in zircon) and supplemented by whole-rock major and trace elements geochemistry. The student will use these data to update the geological evolution of the Shackleton Range, focussing on constraining the age and conditions of metamorphism and magmatism associated with the former mountain building events. The student will develop a high level of expertise in the use of mass spectrometry for isotopic and elemental analysis. This work will be carried out in close collaboration with the supervisors Gardiner (St Andrews), Riley (BAS) and Flowerdew (CASP) and the student will be embedded in research teams at both BAS (Cambridge) and St Andrews University (likely 2 months).

The improved understanding of how the various geophysical signatures developed and what they represent, contextualised into a comprehensive geological and tectonic history for East Antarctica and formerly adjacent regions, by the extrapolation of the geophysical anomalies away from the Range. In close collaboration with Jordan (BAS), the student will be provided with enhanced training in the processing and interpretation of airborne geophysical data to evaluate the broader tectonic setting of the Shackleton Range. A possibility of comparative fieldwork in either the Gawler craton (Australia) or Kalahari craton (southern Africa) (Figure) will enable a broader view of the Proterozoic sequences.

Overall the proposed project will determine a geological and tectono-metamorphic history of the Shackleton Range and evaluate its place in the assembly of East Antarctica.


Funding Notes

UK students will be eligible for a full NERC studentship. More information is available in the UKRI Training Grant Guide (https://www.ukri.org/apply-for-funding/before-you-apply/your-responsibilities-if-you-get-funding/meeting-ukri-terms-and-conditions-for-funding/)

A full studentship will include the cost of fees and a maintenance allowance. UKRI have confirmed that international students (EU and non-EU) will be eligible for all Research Council-funded postgraduate studentships from the start of 2021/2022 academic year. There will be a limited number of international studentships available

References

Liu et al. 2018. First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications. Nature Scientific Reports, 8, 16403.
Riley, T.R. et al., 2020. U-Pb zircon geochronology from Haag Nunataks, Coats Land and Shackleton Range (Antarctica): constraining the extent of juvenile Late Mesoproterozoic arc terranes. Precambrian Research, 340, 105646.
Tessensohn, F.; Thomson, M.R.A., 1999 The EUROSHACK Project: a brief outline. Terra Antarctica, 6, 175-182.
Will, T.M., et al. 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: Constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana. Precambrian Research 172, 25-45.
Will, T.M. et al.., 2010. Geochemical and isotopic constraints on the tectonic and crustal evolution of the Shackleton Range, East Antarctica, and correlation with other Gondwana crustal segments. Precambrian Research 180, 85-112.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs