Postgrad LIVE! Study Fairs

Southampton | Bristol

University of Leeds Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Imperial College London Featured PhD Programmes
Queen’s University Belfast Featured PhD Programmes

The Waves The Winds Blow

  • Full or part time
  • Application Deadline
    Tuesday, April 30, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Project:
Atmospheric gravity waves (GWs) are waves generated by wind flowing over mountains, by weather systems and by convective storms in the tropics. They are a vital part of the climate system, and they strongly affect how the air moves at all heights from the surface of the Earth to the edge of space. However, they are extremely difficult to simulate in weather and climate forecasting, because of their small size relative to the Earth as a whole (hundreds of metres to hundreds of kilometres).

Since models have such difficulty simulating GWs, the most effective way to study them is in observational data. However, while waves are inherently wind phenomena, previous research on their behaviour at the global scale has only been able to study the effect of these winds on atmospheric temperature. “The Waves The Wind Blow” will address this problem directly, using high-altitude wind data to study the true form of the waves directly and hence understand them better than ever before.

In the first year of the project, we’ll look at wind data recorded by global commercial aircraft, characterising the wave signatures present in them to understand their distribution over major flight paths. We’ll compare these measurements to temperature-based satellite observations, allowing us to better use these historic data. This will help us understand how they drive aircraft turbulence, one of their most important day-to-day effects.

In later years, assuming the data become available as expected, we will switch to studying global data from ESA’s new Aeolus satellite wind profiler. This will allow us to study wave sources that have been extremely difficult to measure before, such as tropical convection and storm systems – waves from these sources are known to be important contributors to atmospheric dynamics, but have yet to be properly quantified. We will also look at winds derived from state-of-the-art weather models to understand how the models can better simulate the effects of the waves, helping to advance climate change research.

What You’ll Learn:
From the supervisory team, you’ll receive training in programming (including high-performance supercomputing and big data analysis), in the use of data from a wide range of atmosphere-measuring instruments, and in the analysis and interpretation of climate and weather models. You’ll also benefit from taking part in specialist external training courses in the atmospheric sciences, at both national and international level. As you progress towards your PhD, you’ll have the chance to present at major international research conferences, and to publish papers in leading journals. Throughout the project, you’ll work with a wide range of internal and external collaborators.

This extensive training and collaborative experience will prepare you for a range of careers across science and beyond. Recent PhD students from the Centre have gone on to a variety of careers, including academic research, the Met Office, the European Space Agency and the Civil Service, as well as into a range of private sector positions, both research and otherwise.

Application:
Successful applicants will ideally have graduated (or be due to graduate) with an undergraduate Masters first class degree and/or MSc distinction (or overseas equivalent). Any English language requirements must be met at the deadline for applications.

Formal applications should be made via the University of Bath’s online application form for a PhD in Electronic & Electrical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form.

https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUEE-FP01&code2=0013

More information about applying for a PhD at Bath may be found here:

http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/

Anticipated start date: 30 September 2019


Funding Notes

This project is eligible for inclusion in funding rounds scheduled for end of January 2019, February 2019, March 2019 and April 2019. A full application must have been submitted before inclusion in a funding round.

Funding will cover Home/EU tuition fees, a maintenance stipend (£14,777 pa (2018/19 rate)) and a training support fee of £1,000 per annum for up to 3.5 years. Early application is strongly recommended.

How good is research at University of Bath in Electrical and Electronic Engineering, Metallurgy and Materials?

FTE Category A staff submitted: 20.50

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.