Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Theory for the Quantum Entangled states of cold atoms controlled with extreme light


   School of Physics and Astronomy

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr A Demetriadou  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

When light illuminates a dielectric object, it is transmitted and reflected. By controlling the topology of such objects (for example their geometry and periodic arrangement), one can direct and concentrate light at extremely small and sub-wavelength volumes, tremendously increasing the light intensity at the same time. Cold atoms placed inside such extreme photonic environments, absorb photons to excite electrons at higher energy states. Hence, the light and matter (atoms) continuously exchange energy. The properties of the photonic environment control how quickly the energy exchange occurs, and tailor the properties of the combined system. When the energy exchange frequency is comparable to the bare frequencies of the cold atom and photonic environment alone, then the combined system enters the ultra-strong coupling regime and allows us to gain access to the fundamental elements of matter. Such systems form the basis for many future applications in quantum technologies and quantum information processing.

This PhD project will focus on (i) building the necessary theoretical models to understand the energy exchange dynamics between cold atoms and the photonic environment (ii) performing numerical calculations to complement the analytical descriptions, optimize the photonic environment and investigate more complex systems and (iii) interact with the experimentalists in the cold atoms group towards the actual realization of the ultra-strong coupled system.

The PhD candidate should have completed (or about to complete) his/her undergraduate degree in Physics (preferably with first class honours or equivalent). The PhD candidate is expected to have keen interest on Electromagnetism, Quantum Optics and exceptional mathematical skills. Details of the project will be agreed with the successful candidate to tailor the research to his/her interests.

The project will take place in the Nanophotonics group of Dr Angela Demetriadou (https://www.birmingham.ac.uk/staff/profiles/physics/demetriadou-angela.aspx), which is part of the Metamaterials Research Centre (https://www.birmingham.ac.uk/research/activity/physics/quantum/metamaterials/index.aspx) in the School of Physics and Astronomy at the University of Birmingham. The candidate will also work very closely with the Cold Atoms group (https://www.birmingham.ac.uk/research/activity/physics/quantum/cold-atoms/index.aspx).

In line with the Department’s Athena SWAN programme, we particularly welcome female applicants.

For details of the funding available, advice on making your application or any other informal enquiries, please contact Dr Angela Demetriadou at: [Email Address Removed]

You can apply here: https://sits.bham.ac.uk/lpages/EPS005.htm
clearly stating the title of the project, the name of the supervisor (Dr. Angela Demetriadou) and the Metamaterials Research Centre.

Funding Notes

Funding is awarded on competitive basis, is only available to UK/EU nationals and it will cover tuition fees and living stipend. Non-EU candidates with the correct qualifications will only be considered if they are self-funded or funded via other means.

How good is research at University of Birmingham in Physics?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Where will I study?