University of Leeds Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
Heriot-Watt University Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
University of Hull Featured PhD Programmes

Therapeutic effects of low-level (infra-red) light on muscle function in health and disease (Ref:SF20/SER/WILKINSON)

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Many disease states are characterised by low exercise tolerance and low daily activity levels, secondary to central and/or peripheral oxygen transport and utilization limitations. Exercise training can mitigate functional declines, but achieving a sufficient stimulus for adaptation is problematic when exercise tolerance is limited by ventilatory, central hemodynamic and/or peripheral muscle abnormalities. This has promoted research into novel strategies to facilitate muscle reconditioning in long-term conditions characterised by limited exercise tolerance. Interval training and single-leg exercise are examples of strategies shown to facilitate exercise exposure and peripheral muscle adaptations in heart and lung sufferers.
Many cell proteins are sensitive to light. Red light in particular stimulates cytochrome c oxidase, upregulating mitochondrial oxidative metabolism, ATP production and biogenesis, producing new and larger mitochondria. Increased cellular charge in smooth muscle of blood vessels increases vasodilation and augments tissue perfusion. Improved mitochondrial function and tissue blood flow improve functional capacity and are targeted adaptations of exercise training. Recent evidence suggests that exercise tolerance can be increased, fatigue reduced, and aerobic training adaptations augmented with acute and chronic exposure of peripheral muscle groups to low-level (infra-red) light before and after exercise in healthy adults. Peripheral muscle metabolism and exercise capacity responses to low-level light therapy (LLLT) have not been examined in populations with limited ability to perform exercise training. Such improvements would have broad applications for restoring muscle function in many chronic disease sufferers. Furthermore, when exercise is not possible, as during bed rest, LLLT may provide adequate stimulus to combat muscle dysfunction by inducing local muscle perfusion, mitochondrial biogenesis and increased metabolism.
The aim of the proposed series of studies would be to examine the effects of LLLT on exercise capacity, and peripheral muscle oxygen availability in healthy-normal populations, and in populations characterised by peripheral muscle dysfunction. Doppler imaging and Near Infrared Spectrometry will be used to study muscle perfusion and oxygen availability following LLLT in these populations.

Eligibility and How to Apply:
Please note eligibility requirement:
• Academic excellence of the proposed student i.e. 2:1 (or equivalent GPA from non-UK universities [preference for 1st class honours]); or a Masters (preference for Merit or above); or APEL evidence of substantial practitioner achievement.
• Appropriate IELTS score, if required.
• Applicants cannot apply for this funding if currently engaged in Doctoral study at Northumbria or elsewhere.

For further details of how to apply, entry requirements and the application form, see
https://www.northumbria.ac.uk/research/postgraduate-research-degrees/how-to-apply/

Please note: Applications that do not include a research proposal of approximately 1,000 words (not a copy of the advert), or that do not include the advert reference (e.g., SF20/…) will not be considered.
Deadline for applications: Open
Start Date: October 2020 or March 2021
Northumbria University takes pride in, and values, the quality and diversity of our staff. We welcome applications from all members of the community. The University holds an Athena SWAN Bronze award in recognition of our commitment to improving employment practices for the advancement of gender equality.

For enquiries, contact Dr Mick Wilkinson ()

Funding Notes

Please note, this is a self-funded project and does not include tuition fees or stipend; the studentship is available to Students Worldwide. Fee bands are available at View Website . A relevant fee band will be discussed at interview based on project running costs

References

Ingle L, Wilkinson M, Carroll S, Boyes C, Cleland JGF, Clark AL. Cardiorespiratory requirements of the 6-min walk test in older patients with left ventricular systolic dysfunction and no major structural heart disease. Int J Sports Med. 2007 28: 678-684.
Keane KM, George TW, Constantinou CL, Brown MA, Clifford T, Howatson G. Effects of Montmorency tart cherry (Prunus Cerasus L.) consumption on vascular function in men with early hypertension. Am J Clin Nutr. 2016 Jun;103(6):1531-9.
Keane KM, Haskell-Ramsay CF, Veasey RC, Howatson G. Montmorency Tart cherries (Prunus cerasus L.) modulate vascular function acutely, in the absence of improvement in cognitive performance. Br J Nutr. 2016 Dec;116(11):1935-1944.
Vogiatzis I, Habazettl H, Louvaris Z, Andrianopoulos V, Wagner H, Zakynthinos S, Wagner PD. A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy. J Appl Physiol. 2015 Mar 15;118(6):783-93

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.