University of Sheffield Featured PhD Programmes
University of Warwick Featured PhD Programmes
The Chinese University of Hong Kong Featured PhD Programmes

Tracking plastic particles and co-contaminants in biological tissues

Faculty of Engineering and Physical Sciences

Guildford United Kingdom Analytical Chemistry Biochemistry Environmental Chemistry Marine Biology Medical Physics

About the Project

The project proposes to push forward a ground-breaking approach to tackle directly the analytical issue of tracking plastic particles and their impact in biological tissues, which will forward-orientate the future ecotoxicological studies on plastic litter. In this project, we will characterise the tissue distribution of plastic particles, co-contaminants and associated metabolites in model biological tissues by developing a novel elemental/molecular analytical method using the ion beam/mass spectrometry facilities at Surrey to match the method already developed by Dr Al-SID-CHEIKH using radiolabelling of plastic polymers.

Plastics are lightweight, inexpensive, and highly durable materials that are used in a wide variety of products which have infiltrated almost every aspect of modern life, displacing other materials and revolutionizing contemporary society. It is estimated that up to 51 trillion microplastic (MP, <5mm) fragments have accumulated at the sea surface and that quantities will continue to increase. Most scientists working in the field consider that plastic objects are fragmenting into even smaller nano-sized pieces (nanoplastic, NP; <1000nm). A huge amount of MP/NP is therefore accumulating in the environment every year, with concerns about associated toxicological effects. One of the main concerns about plastic particles in the environment is their potential effect on aquatic organisms and their potential transfer in the food web. NP may reduce zooplankton survival and introduce behavioural disorders in fish, which have been postulated to result from NP penetrating the blood-to-brain barrier. However, due to the analytical challenge, no studies have yet demonstrated NP elemental/molecular biodistribution in higher level animal (e.g. fish, rodent) and the potential to reach critical organs such as the brain. Consequently, it is difficult determine whether the causes of any changes in behaviour or survival are related to physical damage to the digestive tract, to NP crossing blood-to-brain barrier or to the excessive plastic concentrations used. Such assessments need to develop ways to track directly NP and quantify their residence time, tissue distribution (potential absorption blood, brain, liver, kidney, intestine) and potential for trophic transfer.

This project will push forward a complementary analytical method to the radiolabelling approach already developed by the Dr Al-Sid-Cheikh to investigate the potential risks of NP to organisms in environmentally realistic scenarios. We will develop with Dr Bailey a complementary elemental and molecular characterisation of plastic particles, co-contaminants and associated metabolites in biological tissues.

This is a 3 year project starting in July 2021.

Entry requirements

We are looking for enthusiastic, committed students who enjoy working as part of a team and doing research with an impact. Candidates should have or shortly be about to complete an honours degree in the Chemistry or biochemistry (and other closely related field, e.g. environmental, biomedical, pharmacology sciences etc.) with a predicted or achieved grade of 2.1 or above, a Master’s degree, or substantive relevant work experience. Strong Analytical Chemistry and method development skills are an asset.

Available for UK and EU students.

IELTS requirements: IELTS Academic 6.5 overall with 6.0 in Writing, or equivalent 

How to apply

Applications should be submitted via the Chemistry PhD programme page on the "Apply" tab.

Please state clearly the studentship project at you would like to apply for.

Funding Notes

Full UK tuition fees (£4,407), stipend (£15,285) and RTSG (£1,000) p.a. for 36 months at the full-time rate, 72 months part-time

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Surrey will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully

Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.

FindAPhD. Copyright 2005-2021
All rights reserved.